

RECEIVED

MEMORANDUM

To Simon Lenton, Manger Statutory Planning, DevelopmentWA

From MetCONNX / Urbsol

Copy to Cheyenne Ellis – Senior Planner, DevleopmentWA

Reference Byford Rail Extension – Development Application 2 – Eleventh Road Bridge

Date 25 May 2023

Subject Eleventh Road Bridge, Transport Impacts

Introduction

This technical memo presents a summary of the traffic impacts associated with the development of Eleventh Road Bridge. The need to provide this technical memo is a result of a meeting held with DevelopmentWA on Monday 15 May 2023.

The purpose of this technical memo is to summarise the detail in the WSP Traffic Analysis Summary relevant to the Eleventh Road Bridge. The Traffic Analysis Summary assessed the potential traffic impacts to the road network surrounding Armadale and Byford Stations and the closure of level crossings, under the future year demands associated with project and non-project traffic growth.

This technical memo includes the following information:

- 1. Design Evolution
- 2. WSP Traffic Analysis Summary
- 3. Road Modifications
- 4. Pedestrian and Cycling Modifications
- 5. Impact Summary

This technical memo is to be read in conjunction with the Development Application Report and the Bushfire Vehicular Access Review prepared by Linfire Consultancy.

1. Design Evolution

Background

Eleventh Road, immediately west of the Southwestern Highway, is currently at-grade. As part of the BRE project, the road is to be grade separated, with a road bridge over the proposed rail alignment. The extents of the road that are part of the project upgrades are included in Figure 1. This includes the road 500m either side of the rail crossing.

Figure 1: Eleventh Road Design Extents

Currently this is an at grade level crossing but will change to a road bridge over rail as part of the design. The horizontal alignment of the new design will generally follow the existing alignment, with a bridge slightly to the North of the existing at-grade crossing to minimise impact on adjacent properties. The vertical alignment will change to accommodate the road bridge over the rail with minimum vertical clearance from bridge soffit to rail of 6.3m. Refer to Interim Detailed Design drawings for details (Appendix A).

Stakeholders for the works include the Public Transport Authority (PTA), Main Road Western Australia (MRWA), City of Armadale (CoA) and Shire of Serpentine Jarrahdale (SSJ). All stakeholders have provided review comments at each design milestone, with reference design submitted December 2022 and IDD February 2023.

Key comment raised form CoA was to ensure that proposed design did not preclude future upgrades for Eleventh Rd ultimate design. Advice received notes Eleventh Rd is not It earmarked for additional lanes in future, 2 x 3.5 lanes in both directions only. It is noted as per MRA "Wungong Urban Water – Movement Network Policy" that CoA plan to upgrade Eleventh Rd to a divided road cross section of 28.2m cross section in the future however timing and nominated tie in points have not been determined.

ROAD AVENUE A - DIVIDED

Figure 2: Eleventh Road Ultimate Lane Configuration Extract Wungong Urban Water - Movement Network Policy

2. WSP Traffic Analysis Summary

WSP was previously engaged by the PTA to assess the potential traffic impacts to the road network surrounding Armadale and Byford Stations and the closure of level crossings, under the future year demands associated with project and non-project traffic growth. The outcomes of the investigations, relevant to the Eleventh Road Bridge, were documented in the report Byford Rail Extension Future Year Traffic Impact Analysis Armadale (March 2022). Those investigations focussed on intersections in the vicinity of the stations, and as such included an assessment of the SWH/Eleventh Road intersection but did not consider the basic capacity of Eleventh Road in the immediate vicinity of the proposed rail grade separation.

As part of the development of the BRE project, and to assist WSP with their traffic investigations, MRWA updated the ROM24 model specifically for the projects, and also included making changes to the land uses around the stations and implementing the project road network configuration changes. Because of the modified land use assumptions in that model scenario, it was not possible to identify which traffic volumes are associated with the BRE project and which will occur irrespective of the project.

As a result, the analysis conducted by WSP should be viewed as an investigation of likely required intersection upgrades that may be required if land use and future road (and rail) network development for the entire Metropolitan Area occurs in line with current assumptions.

Based on the assessment undertaken by WSP, it was suggested that SWH needed to be duplicated, in order to provide a staged right turn out, to operate satisfactorily in 2026. Interestingly, replacing the projected 2026 traffic volumes with 2021 traffic counts undertaken at the intersection (in the SIDRA assessment) indicated that the intersection already operates beyond capacity, with the right turn out operating at Level of Service (Los) F in the peak traffic periods.

Traffic analysis undertaken as part of the Armadale Station Redevelopment Transport Impact Assessment (TIA) indicated that compared to existing trip generation at the station, proportioning up trip generation in accordance with patronage growth would result in an additional 3 trips in the 2026 AM peak and 6 trips in the 2026 PM peak (including both inbound and outbound trips). These additional trips are considered insignificant. Further, in the assessment undertaken to date for the Byford Station TIA, as agreed with the Shire of Serpentine-Jarrahdale, very few trips to/from the station are expected to originate from SWH to the north, or from Eleventh Road.

The WSP assessment undertaken went on to assess intersection performance out to a 2036 time horizon. For this assessment, it was determined that the provision of a roundabout or traffic control signals would be required to accommodate the forecast traffic projections at the intersection.

Referring back to the Armadale Station Redevelopment TIA, the additional traffic estimated to be generated as a result of patronage growth to 2036 was a total of 61 AM peak trips and 101 PM Peak trips (including both inbound and outbound traffic).

This estimated additional traffic was considered highly conservative, because if planned mode share targets are achieved, private vehicle traffic generated to Armadale Station would actually reduce compared to current levels. Regardless, hardly any of that conservatively estimated additional traffic, if any, would be expected through the SWH/Eleventh Road intersection. And as already mentioned and agreed with the Shire of Serpentine-Jarrahdale, very few trips to/from the new Byford Station are expected to originate from SWH to the north, or from Eleventh Road.

Based on the above information, the BRE project is expected to contribute an insignificant amount of traffic at the SWH/Eleventh Road intersection. And whilst the intersection may well require upgrades to accommodate existing traffic volumes and future traffic projections, the upgrades are not considered to be attributable to the BRE project.

3. Road Modifications

The construction of Eleventh Road Bridge does not materially modify Eleventh Road Bridge. It is simply raising an existing crossing that is typically a free flowing road to traffic (closed a few times a day for regional rail purposes). Additionally, The proposal does not generate any additional traffic because it is not introducing / adding / modifying any land uses in the immediate area.

As part of the proposed development, road modifications are proposed along a section of Eleventh Road to accommodate the development. The following modifications are proposed:

- Construction of new bridge crossing over the existing railway line, and resultant elevation of Eleventh Road to the new bridge height.
- Relocation of Bruns Drive connection to Eleventh Road further to the east and reconfiguration as a one-way
 access or egress to Eleventh Road (currently under review), and construction of new cul-de-sac road to southeast of bridge, on southern side of Eleventh Road.
- Construction of new drainage basin and private driveway to north-east of new bridge.
- Construction of a new drainage basin to west of new bridge, and extension of Keenan Street further to the east and north, terminating immediately south of Eleventh Road.
- Construction of an Emergency Access Way (EAW) from the existing termination of Keenan Street, further east within the road reserve to connect to the existing EAW from Rivose Crescent.
- Construction of a new Fire Service Access Way (FSAR)/Emergency Access Way (EAW) along the railway
 and underneath Eleventh Road, from Rivose Crescent to the existing Wilson Street cul-de-sac 250 m to the
 north
- Construction of a new PSP south of, and underneath, Eleventh Road.
- Realignment of existing driveways from various lots, to accommodate new road layout.
- Realignment of services to accommodate the proposed modifications.

Please refer to Appendix B for the Bushfire Vehicular Access Strategy for further details on the road modifications and the impact on the surrounding area.

4. Pedestrian and Cycling Modifications

Existing Eleventh Rd Lane configuration has one 3.5m lane in each direction with 500mm sealed shoulders with no shared path facilities or cycle lanes on the vicinity of the works site.

Figure 3: Eleventh Road Existing Cross section facing east

The proposed works will include a new shared path on the southern side of Eleventh Rd over the grade separation 3.5m wide incl shoulders which will provide connectivity from Bruns Drive to the proposed PSP which runs from Armadale Rd to Abernathy Rd.

5. Impact Summary

Eleventh Road Capacity Assessment

Eleventh Road is an east-west road that links SWH to the suburbs of Hilbert and Haynes and provides further indirect connectivity to Armadale Road and Tonkin Highway. It is a single carriageway road with a single lane in each direction and has a sign posted speed limit of 80 km/h. It is classified as a "Distributor B" road within the MRWA Road Hierarchy and intersects the existing Armadale railway line (at-grade boom gates) at a location approximately 660m west of SWH.

Traffic surveys conducted by Surveytech in May 2021 indicate that Eleventh Road, at the SWH intersection carries approximately 1,320vpd in each direction i.e. a total of 2,640vpd.

To estimate future traffic volumes on Eleventh Road, information from Main Roads' ROM24 traffic model was sourced. That model indicates uneven growth between directions on Eleventh Road. This can be attributed to the nature of the model coding of the road network in the vicinity, which includes parallel links that provide connectivity between SWH and Wungong Road i.e. Eleventh Road and the Byron Road-Eliot Road-Stone Street route. Because of this, and due to the Byron Road rail crossing to the north being removed, traffic growth on both Byron Road and Eleventh Road were summed, and then added to existing traffic on Eleventh Road.

Total traffic growth on both Eleventh Road and Byron Road between 2021 and 2036 is expected to be 3,100vpd eastbound and 3,200vpd westbound. Summing this growth with existing volumes results in 2036 traffic projections of 4,400vpd eastbound and 4,500vpd westbound. Even with the conservative nature of these calculations which assumes all traffic growth from Byron Road will divert to Eleventh Road, the projected volume of traffic is well within the available capacity and function of the road.

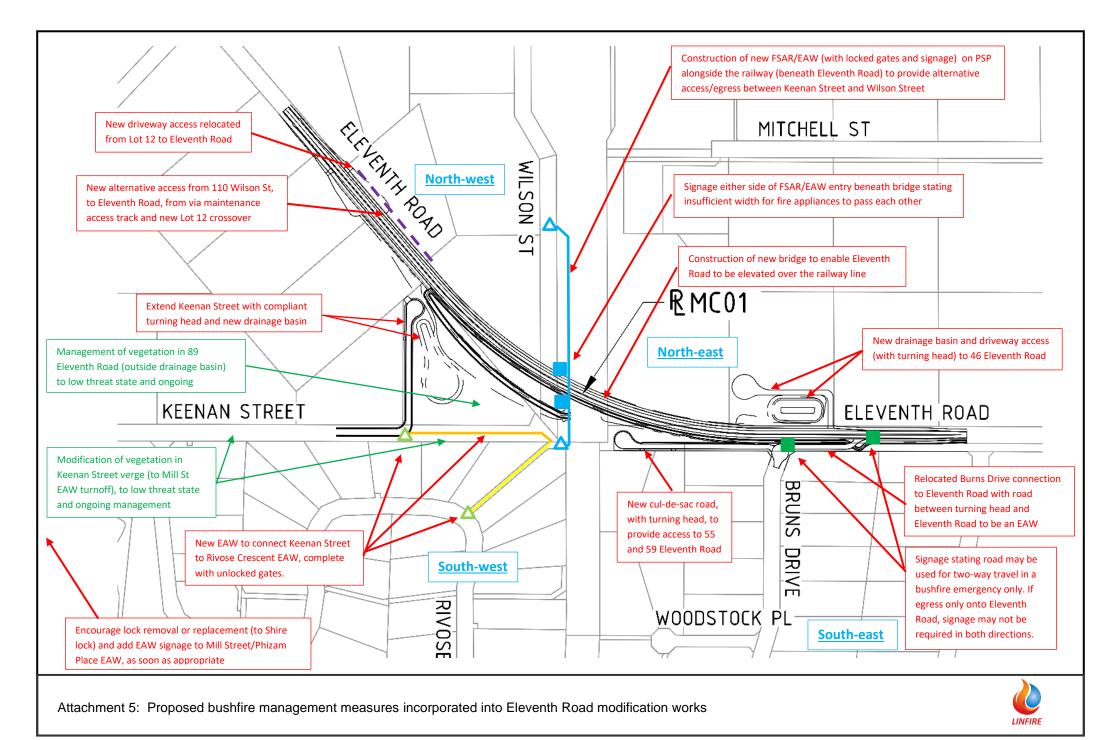
Local Impacts

The grade separation of the rail line requires some restrictions to a number of existing traffic movements that are possible at the intersection of Eleventh Road and Bruns Drive (west). This includes the removal of the following movements:

- Left turn from Bruns Drive (west) to Eleventh Road
- Right turn from Bruns Drive (west) to Eleventh Road
- Right turn from Eleventh Road to Bruns Drive (west)

The removal of these movements means that they will need to be facilitated at the Eleventh Road/Bruns Road (east) intersection.

Currently the Bruns Drive approaches at Eleventh Road services approximately 83 residential lots. The WAPC Transport Impact Assessment Guidelines contains typical trip generation rates for residential developments. These indicate the following:


- AM peak hour trip rates:
 - 0.2 trips in per dwelling
 - 0.6 trips our per dwelling
- PM peak hour trip rates:
 - o 0.5 trips in per dwelling
 - 0.3 trips our per dwelling

Whilst the semi-rural nature of the properties in the vicinity would likely result in lower trip generation rates, applying the above rates would result in approximately 17 inbound trips and 50 outbound trips in the AM peak, and around 42 inbound trips and 25 outbound trips during the PM peak.

The highest peak volumes on Eleventh Road (west of SWH) occurs during the PM peak, with a total of around 130vph in each direction (noting that these volumes would include any traffic in/out of the aforementioned 83 lots). This volume of traffic is equivalent to around 4 vehicle per minute on average. This low level of traffic means there are ample gaps in the priority traffic stream to not cause any concerns around intersection capacity, even if all movements were combined at one of the Bruns Drive intersections with Eleventh Road.

The local impacts of traffic redistribution as a result of access restrictions at the Bruns Drive (west) intersection are therefore considered to be manageable, with the Bruns Drive (east) intersection having ample capacity to accommodate the expected additional movements without any operational issues. Even considering future traffic growth on Eleventh Road, the intersection would operate satisfactorily with the low volumes in and out of the Bruns Drive intersections.

Appendix A – Attachment 5: Proposed Bushfire Management Measures Incorporated into Eleventh Road Modification Works

Appendix B – Stakeholder Review Comments

PUBLIC TRANSPORT AUTHORITY (PTA) PTA200142 BRE - Byford Rail Extension

Design Pkg Title:	ELEVENTH ROAD CIVIL
Design Report No.:	R30-MET-RPT-CI-405-00001
Reviewer/ Verifier:	Select
Comment Sheet No.:	R30-MET-COM-CI-405-00002
Design Stage:	Reference Design

Category of Non-Compliance											
	N1	Critical	Critical to functionality, safety and RAM. Must be addressed and closed prior to proceeding to next stage. Designer to resubmit corrected information								
	N2	Immediate	Major concern for functionality, safety and RAM. Should be addressed at this stage, but can be addressed at next stage if Reviewer is provided with sufficient supporting evidence that requirements can be met.								
	N3	Discussion	Not a concern for functionality, safety and RAM however should be addressed in next stage for compliance with Schedule 12 scope of work and technical specification. Accepted with comments (proceed to next stage)								

Compliance Status	
Cat 1	Accepted. No further information is required
Cat 2	Accepted with Clarification. subject to agreeing with the response comment, and
Cat Z	additional information is received.
Cat 3	Not Accepted. non-compliant and introduces risk, therefore are not accepted. Supplier to
Cat 3	reissue amended documentation with a written response to the comment

Item	Reviewer (N. Last Name)	Reference (Dwg or Doc.)	Revision	Classification (N1, N2, N3)	Reviewer Comment	Date	Comment Accepted?	Designer / Design Consult Response	Design Lead (N. Lastname)	Date	APPROVED BY DESIGN MANAGEMENT	Response Status (Cat 1, 2, 3)	Reviewer Comment on Response Date
		<	Reviewer to	o Fill	>			Complete	>			<	Reviewer to Complete>
		T			Datail required how proposed DLID either side of		REI	FERENCE DESIGN REVIEW	I				1
1	СоА				Detail required how proposed DUP either side of Eleventh Road will connect to bridge path		Accepted	RD design design allows for shared path to connect to Bruns Drive which then connects back to PSP along rail reserve. Verge to west of shared path has been space proffed for future 2.5m width path extension	John Perrott	01.12.22	Yes - Rob Sutton	N	
2	СоА			N1	Are traffic lanes sufficient to accommodate buses using future Route 250?		Accepted	Lane widening of 200m for design speed 90km/hr has been applied as per table 7.13 Austroads Part 3 for B doubles.	John Perrott	01.12.22	Yes - Rob Sutton	N	
3	СоА	2.3.3 on Pg 12 of report		N1	Report does not consider future proofing bridge against future road widening, only future additional rail lines.		Not Accepted	Advice received notes Eleventh Rd is not it earmarked for additional lanes in future, 2 x 3.5 lanes in both directions only. It is noted as per MRA "Wungong Urban Water – Movement Network Policy" that CoA plan to upgrade Eleventh Rd to a divided road cross section of 28.2m cross section in the future however timing and nominated tie in points have not been determined. Report to be updated noting the above.	John Perrott	01.12.22	Yes - Rob Sutton	Select	Road design works should tie into the ultimate cross section for Eleventh Rd - as per the DevelopmentWA's requirements and the City's advice.
4	CoA			N1	Metconnex traffic modelling of 2018 traffic count (2,218vpd?) + 5% growth rate from 2024 (and the proposed bridge cross-section) does not account for full residential development of Hilbert and Haynes: refer DPLH's 2018 (MRWA) modelling of 7200vpd in 2031, Transcore's 2016 modelling of 7112 vpd in or KCTT's 2022 modelling for Cell H structure plan submission of 13,400 vpd in 2031		1 '	Key impacts will be pavement design and length of barriers required. Road geometry and cross section will not be affected. It is noted extending barriers will be problematic due to interface with existing and proposed driveways. Volumes updated as per recieved MRWA approved ROM data for ELeventh Rd forcasting AADT of 10,400 for 2036.ROM data to be included as appendix at next design phase.	John Perrott	01.12.22	Yes - Rob Sutton	Select	
5	CoA			NI	Eleventh Road bridge design and assumption need to be elevated and discussed;		Accepted	It is noted that western end of Eleventh Rd has a 70km/hr posted speed however eastern end (in proximity of site works) has 80km/hr postd speed. Query raised with Main Roads and CoA if design spped for grade sepperation can be amended to 80km/hr. It is also noted that Eleventh is currently noted at a Rev Network for 27.5m B Doubles. This is requiring 200mm lane widening to be applied. Requiremnt to be reviewed by MRWA and CoA. Items to be noted in design report, no change to design required.		01.12.22	Yes - Rob Sutton	Select	
6	СоА			N1	The Eleventh Road bridge structure will need to connect into the City's future 28.2m wide cross-section for Eleventh Road.		Accepted	Noted, design to tie into exisitng geometry. Design allows for future shared path extension & connection on the south.	John Perrott	01.12.22	Yes - Rob Sutton	N	City's original comment is still relevant.

R30-MET-FRM-EA-000-00004_IV Stakeholder Comments Sheet

PUBLIC TRANSPORT AUTHORITY (PTA) PTA200142 BRE - Byford Rail Extension

Design Pkg Title:	ELEVENTH ROAD CIVIL
Design Report No.:	R30-MET-RPT-CI-405-00001
Reviewer/ Verifier:	Select
Comment Sheet No.:	R30-MET-COM-CI-405-00002
Design Stage:	Reference Design

Category	of Non-Compliand	ce control of the con
N1	Critical	Critical to functionality, safety and RAM. Must be addressed and closed prior to proceeding to next stage. Designer to resubmit corrected information
N2	Immediate	Major concern for functionality, safety and RAM. Should be addressed at this stage, but can be addressed at next stage if Reviewer is provided with sufficient supporting evidence that requirements can be met.
N3	Discussion	Not a concern for functionality, safety and RAM however should be addressed in next stage for compliance with Schedule 12 scope of work and technical specification. Accepted with comments (proceed to next stage)

Compliance Status	
Cat 1	Accepted. No further information is required
Cat 2	Accepted with Clarification. subject to agreeing with the response comment, and additional information is received.
Cat 3	Not Accepted. non-compliant and introduces risk, therefore are not accepted. Supplier to
Cat 3	reissue amended documentation with a written response to the comment

Item	Reviewer (N. Last Name)	Reference (Dwg or Doc.)	Revision	Classification (N1, N2, N3)	Reviewer Comment	Date	Comment Accepted?	Designer / Design Consult Response	Design Lead (N. Lastname)	Date	APPROVED BY DESIGN MANAGEMENT	Response Status (Cat 1, 2, 3)	Reviewer Comment on Response	Date
7	CoA				In relation to the Eleventh Road bridge structure it was also discussed that this would be provided to the City for review and advice before detailed design occurred, so if we could have follow up on this as well it would be appreciated.		Not Accepted	ST440 has been provided to CoA for review/comment	John Perrott	01.12.22	Yes - Rob Sutton	Select		
8	CoA			N1	No additional cul-de-sacs that service lots without emergency fire access/escape routes should be created, as the whole area is a high fire risk and all road designs will need to comply with the WAPC's SPP for Bushfire Planning.		Not Accepted	Bush firse assessment is being complete and will be included as part of next design phase submisison and DA submission. Documented cul de sacs are currently compliant.	John Perrott	01.12.22	Yes - Rob Sutton			
9	CoA			N1	The bridge structure/retaining should have a visual treatment similar to other MRD projects where visible from existing/future development. See photos attached		Accepted	Itme noted to stakeholder register. To be disucssed further with PTA/OMTID.	John Perrott	01.12.22	Yes - Rob Sutton		Bridge maintenance to site with MRD	
10	CoA	R30-MET-DWG-CI-405-04001.dwg		N2	A standard street truncation is required where the extension of Keenan Street turns a corner.		Accepted	Truncation to be updated.	John Perrott	01.12.22	Yes - Rob Sutton		Truncation not yet shown on plans	
11	CoA			N2	All existing trees including those in the Keenan Street reserve should be shown on the plans, with proposed removal/retention to be shown - the City's preference is to retain wherever possible.		Accepted	Noted, trees to be shown at next design phase subject to additional, survey being obtained. Keenan St extension follows existing road reserve therefore impact on trees is already minimised.	John Perrott	01.12.22	Yes - Rob Sutton		OK, please provide full tree information at next stage	
12	CoA			N2	The existing powerlines in the Keenan Street reserve should be picked up on a survey and the design modified accordingly.		Accepted	These poles are being removed as part of project. Service survey to be added next deisgn phase.	John Perrott	01.12.22	Yes - Rob Sutton		OK, thanks for advising. Please include the detail later.	
13	СоА			N2	Drainage basins to the north and south of Eleventh Rd will be owned and maintained by CoA. LANDSCAPING of basins is required and details should be provided to the City. If drainage is from the railway, then PTA will need to manage.		Accepted	These basins are for road runoff only. Landscaping extents to be confirmed.	John Perrott	01.12.22	Yes - Rob Sutton		Landscaping of areas to be managed by the City still to be agreed - COA won't manage new areas from the Project if the landscape outcome and tree retention does not occur. 2. Provide confirmation that drainage coming under ramp from area to northeast can be discharged into Keenan Street drainage without compensation, and that there is capacity in Keenan Street.	
14	CoA			N1	The road/bridge need lighting for safety reasons given existing/future traffic volumes: show lighting on plans		Accepted	Lighting design to be added at next design phase. RD design has space proofed for lighting.	John Perrott	01.12.22	Yes - Rob Sutton		OK, please show in next set	
15	CoA			N2	Consider the guidelines and recommendations for determining any heavy vehicle clearance.		Accepted	Noted MRWA guide to design of oversize and over mass vehicle corridors to be considered.	John Perrott	01.12.22	Yes - Rob Sutton			
16	COA			N2	The Keane St extension could be shorten and a longer corrover provided to reduce land clearing and surplus road construction		Accepted	Noted, length of crossover/driveway to be reviewed.	John Perrott	01.12.22	Yes - Rob Sutton			
17	COA			N1	The proposal includes substantial impacts to local residents and Metro Net/MetCONNX should undertake community consultation with local residents.		Accepted	Note to be complete by stakeholder engagement team.	John Perrott	01.12.22	Yes - Rob Sutton			
18	COA			N1	The design needs to cater for future State Government services through the corridor and ensure that they can be accommodated.		Accepted	Noted, Eleventh Rd design is being coordinated with UT040 package.	John Perrott	01.12.22	Yes - Rob Sutton			
19	CoA			N2	details of proposed assets to be transferred to the City require a separate agreement that needs to be progressed before construction commences.		Accepted	Noted, asset mgt plans and report to be issued to CoA.	John Perrott	01.12.22	Yes - Rob Sutton		Landscaping of areas to be managed by the City still to be agreed - COA won't manage new areas from the Project if the landscape outcome and tree retention does not occur.	
	· T						INTRIN	DETAILED DESIGN REVIEW		<u> </u>				ı
				Colont						1	Select Select	Select Select		
											Select	Select		
											Select Select	Select Select		
-											Select Select	Select Select		
	1000774555			-							Scient	JUICUL	1	1

R30-MET-FRM-EA-000-00004_IV Stakeholder Comments Sheet

PUBLIC TRANSPORT AUTHORITY (PTA) PTA200142 BRE - Byford Rail Extension

Design Pkg Title:	ELEVENTH ROAD CIVIL
Design Report No.:	R30-MET-RPT-CI-405-00001
Reviewer/ Verifier:	Select
Comment Sheet No.:	R30-MET-COM-CI-405-00002
Design Stage:	Reference Design

Category	of Non-Compliand	ce control of the con
N1	Critical	Critical to functionality, safety and RAM. Must be addressed and closed prior to proceeding to next stage. Designer to resubmit corrected information
N2	Immediate	Major concern for functionality, safety and RAM. Should be addressed at this stage, but can be addressed at next stage if Reviewer is provided with sufficient supporting evidence that requirements can be met.
N3	Discussion	Not a concern for functionality, safety and RAM however should be addressed in next stage for compliance with Schedule 12 scope of work and technical specification. Accepted with comments (proceed to next stage)

Compliance Status	
Cat 1	Accepted. No further information is required
Cat 2	Accepted with Clarification. subject to agreeing with the response comment, and additional information is received.
Cat 3	Not Accepted. non-compliant and introduces risk, therefore are not accepted. Supplier to
Cat 5	reissue amended documentation with a written response to the comment

Item	Reviewer (N. Last Name)	Reference (Dwg or Doc.)	Revision	Classification (N1, N2, N3)	Reviewer Comment	Date	Comment Accepted?	Designer / Design Consult Response	Design Lead (N. Lastname)	Date	APPROVED BY DESIGN MANAGEMENT	Response Status (Cat 1, 2, 3)	Reviewer Comment on Response	Date
											Select	Select		
						The state of the state of					Select	Select		
				100000	A.60 100						Select	Select		
											Select	Select		
											Select	Select		
											Select Select	Select		
	7					4990			Simulation of the		Select	Select Select		
						PROPERTY AND ADDRESS OF	•				Select	Select		
	-				A 1 -	7/11	tic -				Select	Select		
		1		ARMADALE RD	A.N						Select	Select		
				Armadale										•
		TINTATI	VII								Select	Select		
							ME TO		The state of the s		Select	Select		
				25/08/2	N22	312					Select	Select		
				E37 001.E		35					Select	Select	<u> </u>	
						The second secon			THE PERSON NAMED IN		Select	Select		
		:							A STATE OF THE PARTY OF THE PAR		Select	Select		
		VA		Select							Select	Select		

R30-MET-FRM-EA-000-00004_IV Stakeholder Comments Sheet 3of 3

Appendix C – Future Year Traffic Impact Analysis - Armadale

Design for a better future /

BRE-WSP-TE-RPT-00001_0

Public Transport Authority

Byford Rail Extension

Future Year Traffic Impact Analysis Armadale

Byford Rail Extension Future Year Traffic Impact Analysis Armadale

Public Transport Authority

WSP Level 5, 503 Murray Street Perth WA 6000 PO Box 7181 Cloisters Square WA 6850

Tel: +61 8 9489 9700 Fax: +61 8 9489 9777

wsp.com

Rev	Date	Details
0	08/03/2022	Final

	Name	Date	Signature
Prepared by:	Pavan Macherla	03/03/2022	A Rose from
Reviewed by:	Phil Greenwood	03/03/2022	P. J. Greenwood
Approved by:	Mark Fowler	08/03/2022	M_

WSP acknowledges that every project we work on takes place on First Peoples lands. We recognise Aboriginal and Torres Strait Islander Peoples as the first scientists and engineers and pay our respects to Elders past and present.

Table of contents

1	Introduction	1
1.1	Project Details	1
1.2	Overall Project Process	1
1.3	Project Location and Modelling Area	2
1.4	Modelled Scenarios	5
2	Methodology	7
2.1	Background	7
2.2	Next Steps	7
3	Future year traffic forecasts	8
	•	
3.2	Network now inconsistencies	о
4	Individual Intersection Modelling Results –	00
4.1		
4.2		
4.2.1		
_		
4.3.1 4.3.2	2026 Do Nothing Scenario	
4.4	SWH/ Stone Street	30
4.4.1	2026 Do Nothing Scenario	
	·	
_		
	•	
4.0.1	Do Nothing Scenario	42
5	Network Modelling Results - Opening year	
	(2026)	43
5.1	Introduction	43
5.2	Armadale Road Network	43
5.2.1	2026 Do Nothing Scenario (LX included and at grade)	
	Do Something Scenario (grade separated)	
	1.1 1.2 1.3 1.4 2 2.1 2.2 3 3.1 3.2 4 4.1 4.2 4.2 1.3 4.3.1 4.3.2 4.4 4.4.1 4.4.2 4.5 4.5.1 4.6 4.6.1 5 5.1 5.2	1.1 Project Details

5.3	Church Avenue Road Network	65
5.3.1 5.3.2	Do Nothing Scenario (LX included and at grade) Do Nothing Scenario (grade separated)	
5.4	Forrest Road Network	
5.4.1 5.4.2	Do Nothing Scenario (LX included and at grade) Do Nothing Scenario (grade separated)	
0.4.2	Do Nothing Goorland (grade Separated)	
6	Individual Intersection Modelling Results -	
	Opening year + 10 (2036)	82
6.1	Introduction	82
6.2	SWH/ William Street/ Bedfordale Road	82
6.2.1	2036 Do Nothing Scenario	82
6.2.2	2036 Do Something Scenario	84
6.3	SWH/ Dickens Place	86
6.3.1	2036 Do Nothing Scenario	86
6.3.2	2036 Do Something Scenario	87
6.4	SWH/ Stone Street	90
6.4.1	2036 Do Nothing Scenario	
6.4.2	Do Something Scenario	92
6.5	SWH/ Eleventh Road	96
6.5.1	2036 Do Nothing Scenario	96
6.6	Eleventh Road/ Wungong Road	101
6.6.1	Do Nothing Scenario	101
7	Network Modelling Results - Opening year	
	+ 10 (2036)	103
7.1	Introduction	103
7.2	Armadale Road Network	103
7.2.1	2036 Do Nothing Scenario (LX included and at grade)	103
7.2.2	2036 Do Nothing Scenario (grade separated)	
7.2.3	Do Something Scenario (grade separated)	112
7.3	Church Avenue Road Network	125
7.3.1	Do Nothing Scenario (LX included and at grade)	
7.3.2	Do Nothing Scenario (grade separated)	129
7.4	Forrest Road Network	133
7.4.1	Do Nothing Scenario (LX included and at grade)	
7.4.2	Do Nothing Scenario (grade separated)	137

8	Summary	142
List	of appendices	
Apper	ndix A MRWA Correspondence & Approvals	
Apper	ndix B URP Traffic Volume Forecasts	
Apper	ndix C SIDRA Modelling Results (2026)	

Appendix D SIDRA Modelling Results (2036)

1 Introduction

1.1 Project Details

The Byford Rail Extension (BRE) project is an initiative by METRONET that facilitates the extension of the Armadale rail line by approximately 8km south, to Byford. This project will result in the upgrade of Armadale Station (elevated) and the provision of a new station at Byford (either at grade or elevated). The project also includes several level crossing removals via grade separation (Armadale Road, Forrest Road, Church Avenue, Eleventh Road and Thomas Road) and the provision of a new road connection (Clara Street) across the railway line. All these changes have the potential to have a traffic impact, both positive and negative, on the existing traffic distribution.

WSP has been engaged by the Public Transport Authority (PTA) to assess the potential traffic impact to the road network surrounding Armadale Station and the closure of level crossings, under the future year demands associated with project and non-project traffic growth. The locations identified for assessment were defined and instructed by Main Roads WA (MRWA).

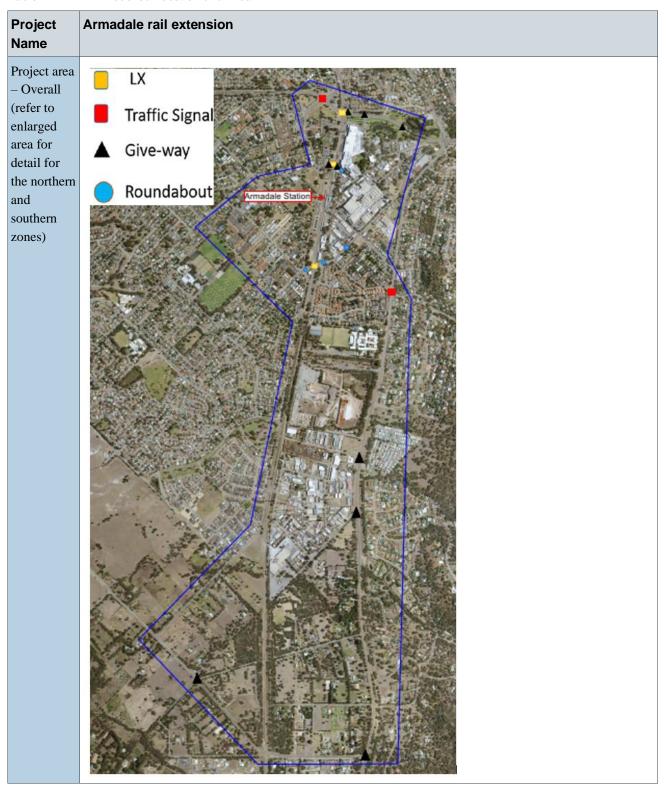
SIDRA base case models have been developed to provide the basis for option testing of the project.

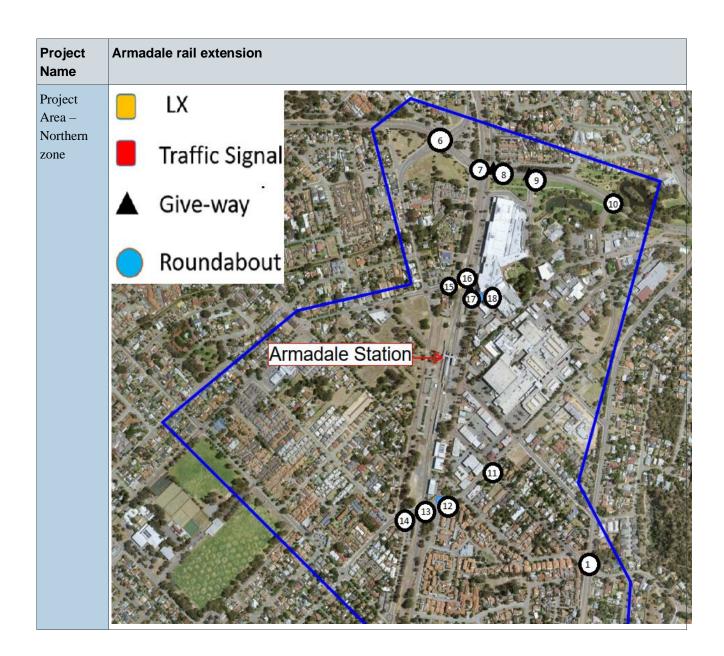
The SIDRA modelling for the base case is documented in *PS125110-PAM-REP-002 RevF Public Transport Authority – Armadale Rail Extension, Sidra Base Model Calibration and Validation Report, WSP, 2021.* The base models have been endorsed by MRWA for use for the future year analysis.

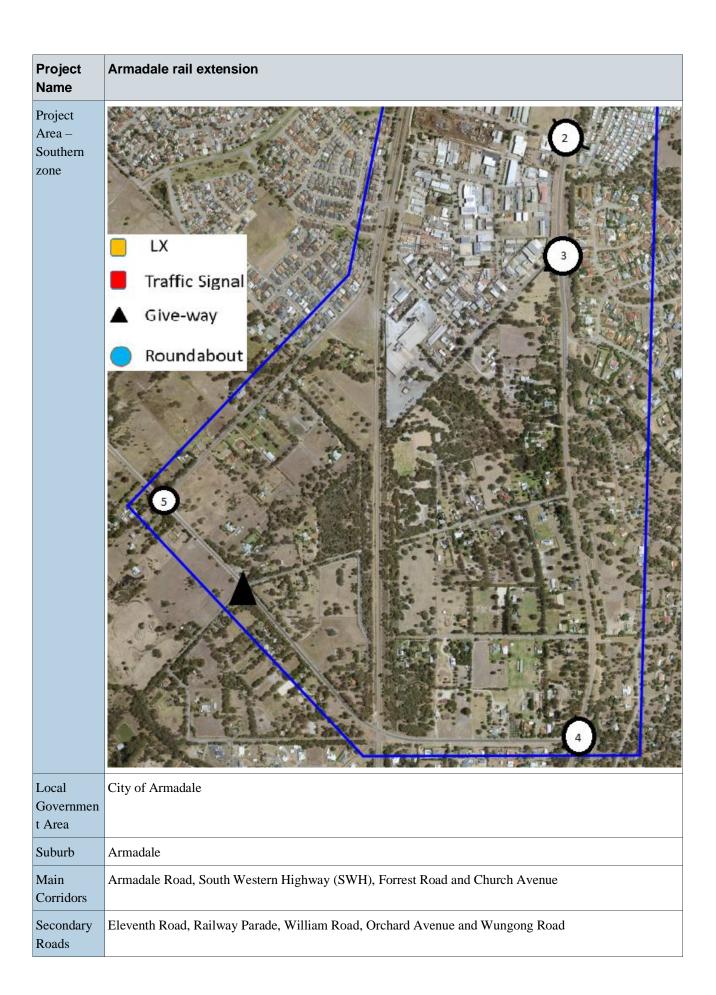
1.2 Overall Project Process

This piece of analysis is one step in an overall piece of work to assess the traffic impact of the BRE.

During the concept design development stage of the project various high-level analyses were undertaken for the BRE project as a whole, which included analysis of the traffic impact adjacent the stations as a result of the project, in addition to further analysis to inform the potential impacts of grade separation of existing level crossings. The work undertaken at that time focussed on design development and so tended to focus in and around the stations.


This report has been instructed by PTA to further inform the BRE project, and its subsequent stages beyond concept design. The scope of this project has been informed by Traffic Modelling Instruction Forms (TMIF) requested by PTA and provided by MRWA. TMIFs were originally provided with the tender documentation and then subsequently updated as part of this project (refer Section 2).


The scope of the analysis in this report (as requested in the TMIF) differs from that completed to inform the concept design in that it covers a much larger geographical area, somewhat distant from the station precincts. It has been assumed this has been requested to be analysed as the potential "area of influence" of the BRE project that is not just focussed on access to and from the stations, but considers areas where level crossings may be removed, or locations that may be physically impacted by the provision of an elevated rail line.


1.3 Project Location and Modelling Area

The location of the intersections modelled in SIDRA are shown in Table 1.1. Locations have been numbered with the corresponding locations detailed following the Table.

Table 1.1 Modelled Location and Area

As specified in the TMIF for this project received from MRWA, some intersections have been modelled stand-alone, and others as part of a network. These models have been used to test Do Nothing and Proposed future scenarios.

The stand-alone intersections for which the SIDRA models have been developed are:

- 1. SWH (South Western Highway)/ William Street/ Bedfordale Hill Road
- 2. SWH/ Dickens Place
- 3. SWH/ Stone Street
- 4. SWH/ Eleventh Road
- 5. Eleventh Road/ Wungong Road.

Several intersections have been modelled as part of networks as listed below.

Armadale Road network consisting:

- 6. Armadale Road/ Abbey Road/ Railway Ave
- 7. Armadale Road Level Crossing
- 8. Armadale Road/ Streich Avenue
- 9. Armadale Road/ Orchard Avenue
- 10. Armadale Road/ Church Avenue.

Church Avenue network consisting:

- 11. Church Avenue/ William Street
- 12. Church Avenue/ Hobbs Drive/ Commerce Avenue
- 13. Church Avenue Level Crossing
- 14. Church Avenue/ Wungong Road/ Green Avenue.

Forrest Road network consisting:

- 15. Forrest Road/ Aragon Court
- 16. Forrest Road Level Crossing
- 17. Forrest Road/ Third Road/ Neerigen Street
- 18. Third Road/ Commerce Avenue/ Supermarket Access.

1.4 Modelled Scenarios

Following confirmation from the PTA that Armadale Station will be elevated and the level crossings of Armadale Road, Forrest Road and Church Avenue will be grade separated, the following options have been modelled, using the previously approved base models:

- 2026 AM peak hour Do Nothing scenario (LX at grade and grade separated)
- 2026 PM peak hour Do Nothing scenario (LX at grade and grade separated)
- 2026 AM peak hour Do Something scenario (grade separated)
- 2026 PM peak hour Do Something scenario (grade separated)
- 2036 AM peak hour Do Nothing scenario (LX at grade and grade separated)
- 2036 PM peak hour Do Nothing scenario (LX at grade and grade separated)

- 2036 AM peak hour Do Something scenario (grade separated)
- 2036 PM peak hour Do Something scenario (grade separated).

In the absence of "without BRE" ROM24 model outputs provided as part of the project, the Do Nothing modelling utilises the project scenario ROM24 outputs and analyses them on the existing intersection / road layouts. It is acknowledged this is not a perfect analysis. It is expected however that due to the limited increase in car parking at the rail stations, and a focus in the future on more sustainable modes for access to the stations the traffic impact associated purely with the project will be limited, and the future year analysis results are expected to be more heavily influenced by general traffic growth in the ROM24 outputs.

This Do Nothing scenario was not requested in the TMIF, but has been carried out using the available information to provide an indication and inform the next steps of the project and the area over which the BRE will be responsible for providing road network upgrades.

The Do Something scenario applies the future year ROM24 outputs to upgraded road and intersection layouts to identify what additional infrastructure provision may be required to accommodate the future year traffic demands, on the area specified in the TMIF.

2 Methodology

2.1 Background

To satisfy the project requirements the following tasks have been undertaken for this project to identify the expected future year performance of the subject intersections:

- The base SIDRA modelling was calibrated, validated and approved by Main Roads WA. This modelling is complete and is documented in PS125110-PAM-REP-002 RevF Public Transport Authority Armadale Rail Extension, Sidra Base Model Calibration and Validation Report, WSP, 2021.
- Future year traffic forecasts were derived using the MRWA Urban Road Planning (URP) method with volume outputs from ROM24 used as a base for those calculations. The volumes have been reviewed and approved by MRWA for use in the proposed models. This is further detailed in Section 3.
- Do Nothing SIDRA models were developed using the approved future year volumes, testing the existing intersection layouts with LX at grade and grade separated configurations.
- A review of the Do Nothing results was carried out to determine if the existing layout can accommodate the future year demands. Where the demands could be accommodated, no further analysis was undertaken.
- Do Something SIDRA models (grade separated option) were developed using the approved future year volumes for intersections and networks where the future year demands could not be accommodated in the existing layout. This further analysis was conducted to determine a theoretical layout which could accommodate the future year traffic volumes. This analysis considered all at-grade intersection layout options (priority controlled, roundabout and traffic signals).
- Reporting of the above (this report) documenting the results.

The above steps were carried out in the context of the MRWA provided TMIF. The final TMIF is provided in Appendix A.

2.2 Next Steps

It should be noted that the analysis contained in this report has been conducted somewhat independent of any design work. It has been a stand-alone task, with the outputs intended to inform the next stages of project development. As such, WSP have considered all potential at grade intersection forms as potentially implementable and arrived at the proposed future year layout following an incremental improvement approach whereby we have added minimum additional capacity to the intersections until they function satisfactorily at an intersection level, for further investigation.

In the context, it is suggested the key next steps are:

- 1. Work with MRWA and the local government to determine which intersection upgrades are the responsibility of the project, noting that some intersections analysed are remote from the project, and that the traffic forecasts used for assessment include general region-wide traffic changes in addition to those instigated by the project.
- 2. Review the ability to implement / construct the potential future year layouts in an engineering constraints context...

3 Future year traffic forecasts

3.1 Forecast Development

The opening year for BRE is expected to be 2024. For the purposes of this assessment however PTA have provided WSP with instruction to adopt 2036 at the Opening Year + 10 years assessment scenario as this aligned directly with a ROM24 outputs and allowed for ease of MRWA traffic volume endorsement. In this context, 2026 has also been adopted as the opening year scenario for consistency, which allows for a little contingency also.

The future year traffic forecasts to be adopted for assessment of 2026 and 2036 were calculated using the MRWA Urban Road Planning (URP) method. This method compares base and future year strategic model data to develop demands for the individual sites based on comparison with observed traffic patterns and allows the ROM24 data to be calibrated for adoption in the modelling. As a result, ROM24 2021, 2031 and 2036 project scenario data and existing survey data were used as a basis from which to calculate and calibrate the final volumes.

As part of the development of the project, MRWA incrementally updated the ROM24 model specifically for the Byford Rail Extension project, which included making changes to the land uses around the station and implementing the project road network configuration changes. These changes were added to the existing ROM24 configuration. As such, it should be noted that it is not possible to identify which traffic volumes are associated with the BRE project and which will occur irrespective of the project, since no ROM24 were provided without the project changes.

In order to estimate opening year (assumed 2026 for this analysis), the provided 2021 and 2031 ROM24 data sets were utilised to determine linear growth and estimate 2026 ROM24 data. This was then used in the URP spreadsheets to develop peak hour turning counts for the opening year, in the same way as the other future years were determined and approved.

In instances where ROM24 data was not available for certain roads on intersection approaches (such as minor roads), a uniform growth factor of 3% per year has been adopted for those links as a base, and further calibration was undertaken as instructed by MRWA Planning and Technical Services. The final volumes have been reviewed and approved by MRWA for use in the future year models, as provided in Appendix A.

Appendix B shows the final 2026 and 2036 traffic volumes used in the proposed SIDRA models for both the Do Nothing and Do Something scenarios. It should also be noted that the traffic volumes provided include all vehicle classes with the volumes for different classes being proportioned using existing data and incorporated into the model.

In addition, further forecast traffic year volumes have been determined including 2031 and 2041 adopting the same methodology.

3.2 Network flow inconsistencies

While undertaking the base network modelling for the Armadale study area, a "network peak" was adopted for each of the network models as opposed to modelling each of the individual intersection peak periods in agreement with MRWA Network Operations and as approved in the base modelling. This is considered to more accurately reflect the operation of the network, and also seeks to reduce differences in approach and departure volumes between intersections in the network.

Despite the adoption of a network peak, some volumes differences still existed in the base modelling when comparing intersection departure and approach volumes. From the analysis, the reasons for these inconsistencies were noted as:

1. Armadale Road network

A residential access at Fountains Court exists between Armadale Road/ Orchard Avenue and Armadale Road/
 Church Avenue.

2. Church Avenue network

 A residential access at John Street exists between Church Avenue/ Commerce Avenue/ Hobbs Drive and Church Avenue/ William Street.

Forrest Road network

 While there are inconsistencies, they are relatively negligible. As there are no intermediary intersections between sites, this is likely attributed to survey limitations.

The above issues were raised as part of the base modelling approval process, where these inconsistencies were noted and accepted by MRWA.

The future year traffic volume forecasting exercise was undertaken by adopting the URP method for the future years. The URP growth method uses existing traffic volumes at the intersections being forecast, to calibrate the ROM24 data.

For individual intersections, there is no differentiation to make between intersection and network peak, and so the existing traffic data to be adopted for use in the forecasting is clear. In the development of the demands for use in a network model, where the approved base models were completed adopting a network peak, a choice can be made for the basis of the ROM24 forecasting between adopting the network peak to align with the base model development, or to adopt the individual intersection peak. WSP initially adopted the former, to remain consistent with the base modelling and to reduce the exacerbation of any flow differences in the base through forecasting to future years.

As part of the future year forecast development, a review conducted by MRWA Planning and Technical Services on WSP's initial URP outputs identified that MRWA forecasts had adopted the individual intersection peak periods for the basis of the calculations and WSP were instructed to use this approach over the network peak approach. Whilst this creates greater inconsistency in the flows departing and approaching adjacent intersections than identified in the base modelling, PTA instructed WSP to adopt the intersection peak method for forecasting. Correspondence in this regard is provided in Appendix A.

In order to provide some context to the results in the proceeding sections of this report, Figure 3.1 to Figure 3.12 identify the level of flow inconsistencies in the 2026 and 2036 volumes being used for the analysis through adopting the individual intersection peaks. These volumes also include the adoption of the previously discussed 3% annual growth assumption in the absence of ROM24 on specific approaches or road links.

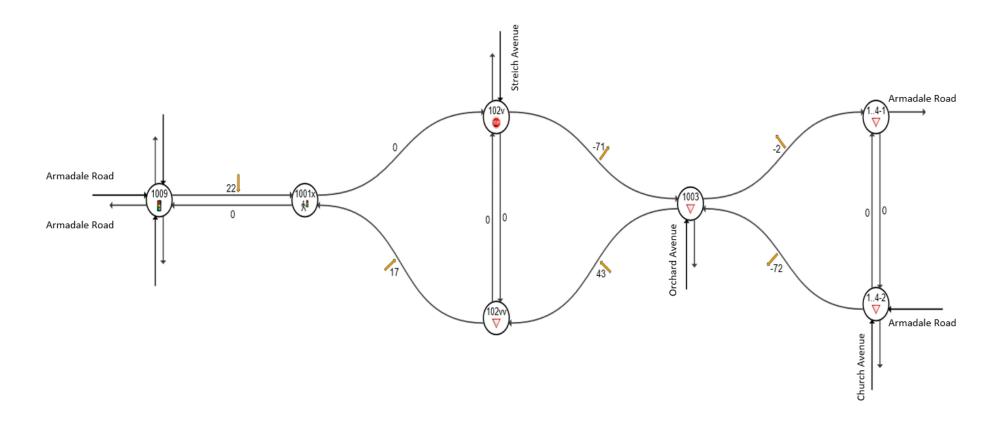


Figure 3.1 Armadale Road Network – Flow inconsistencies (vehicles) – 2026 AM Peak

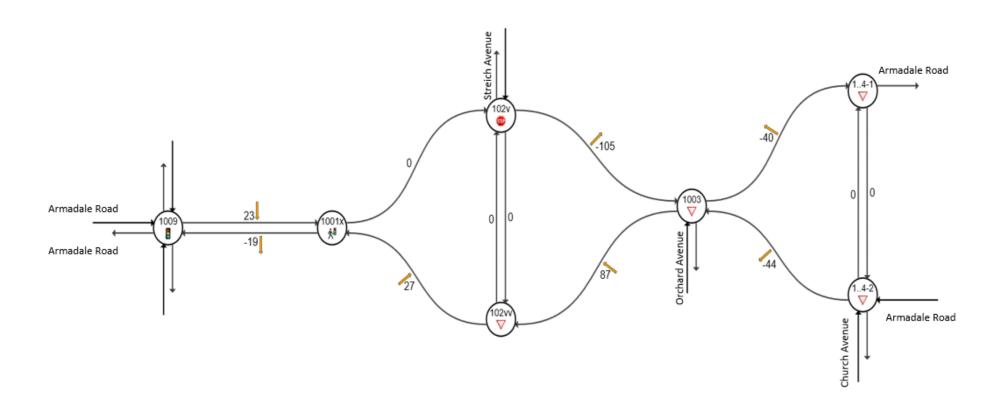


Figure 3.2 Armadale Road Network – Flow inconsistencies (vehicles) – 2026 PM Peak

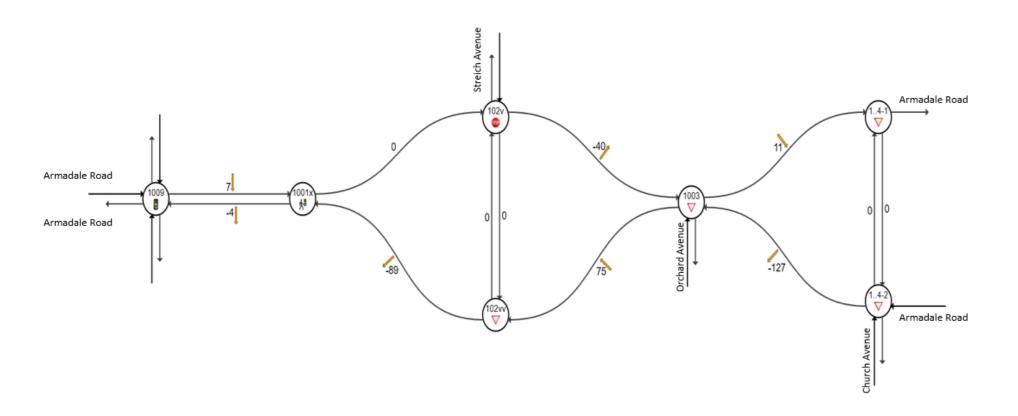


Figure 3.3 Armadale Road Network – Flow inconsistencies (vehicles) – 2036 AM Peak

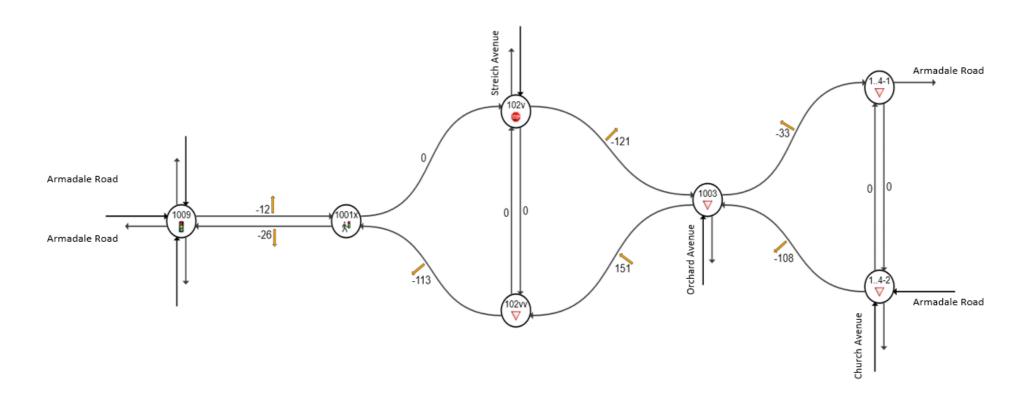


Figure 3.4 Armadale Road Network – Flow inconsistencies (vehicles) – 2036 PM Peak

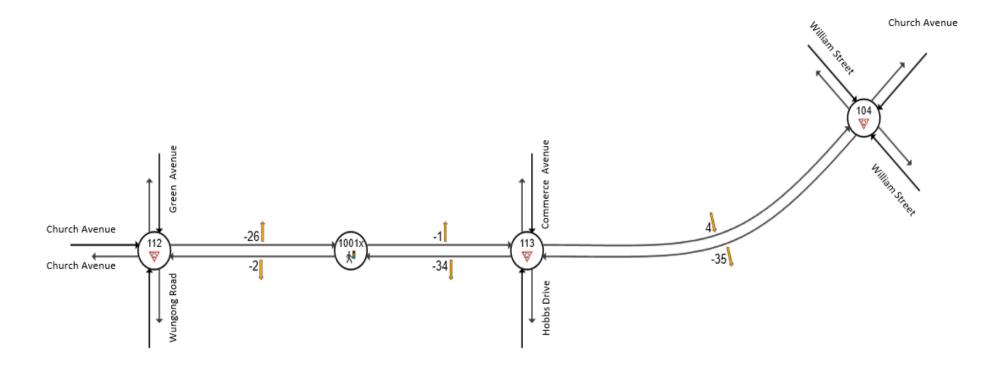


Figure 3.5 Church Avenue Road Network – Flow inconsistencies (vehicles) – 2026 AM Peak

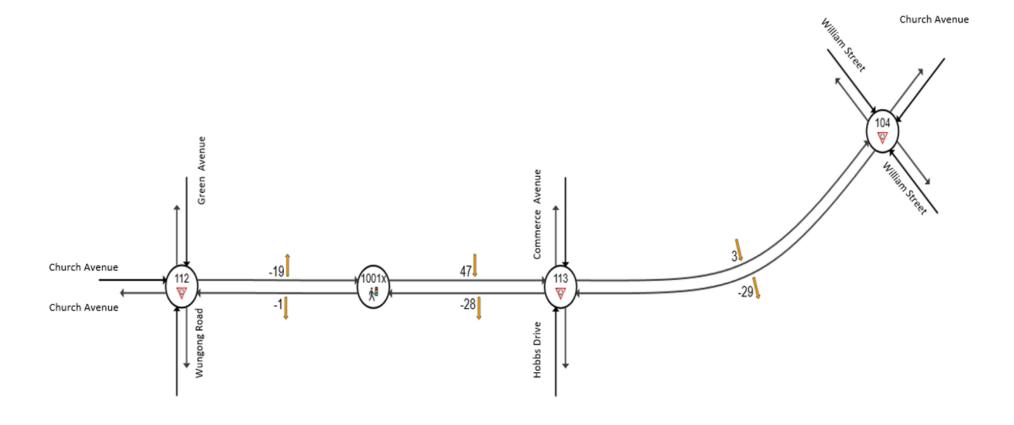


Figure 3.6 Church Avenue Road Network – Flow inconsistencies (vehicles) – 2026 PM Peak

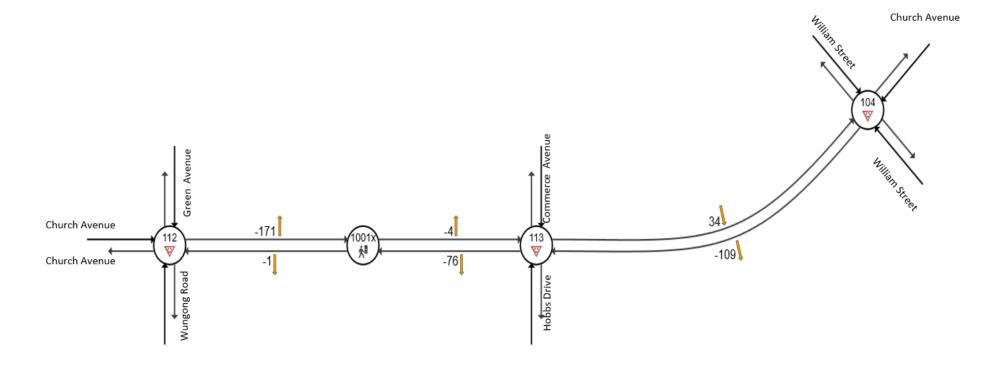


Figure 3.7 Church Avenue Road Network – Flow inconsistencies (vehicles) – 2036 AM Peak

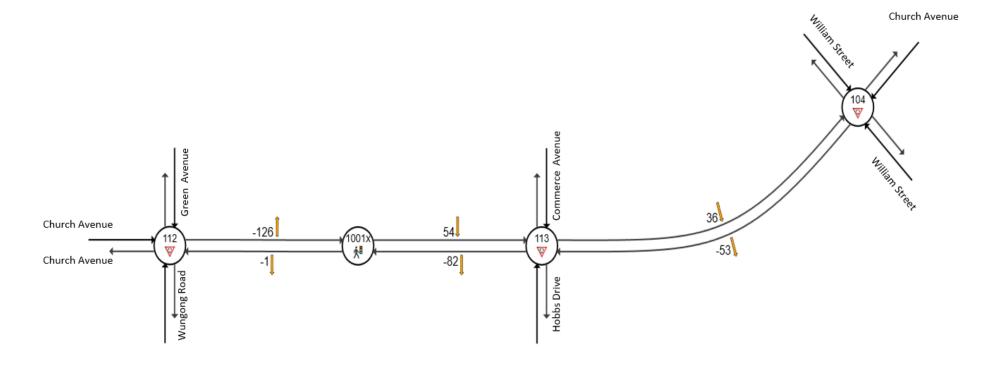


Figure 3.8 Church Avenue Road Network – Flow inconsistencies (vehicles) – 2036 PM Peak

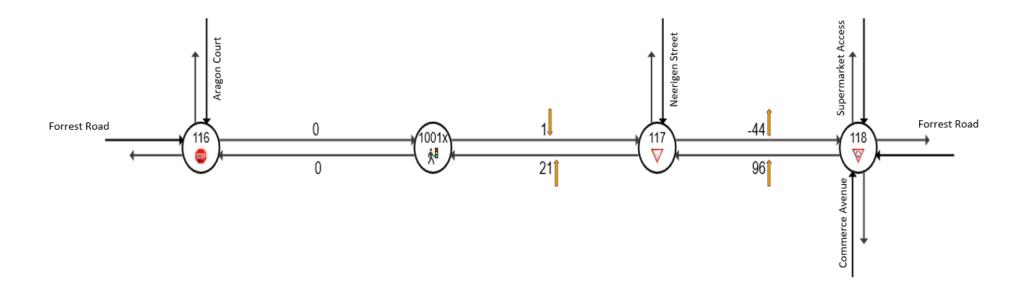


Figure 3.9 Forrest Road Network – Flow inconsistencies (vehicles) – 2026 AM Peak

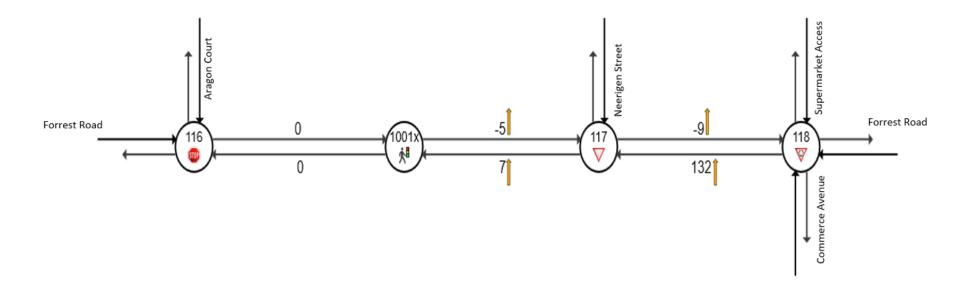


Figure 3.10 Forrest Road Network – Flow inconsistencies (vehicles) – 2026 PM Peak

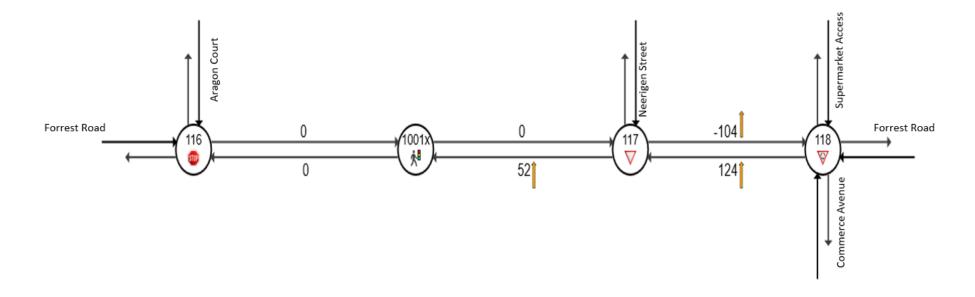


Figure 3.11 Forrest Road Network – Flow inconsistencies (vehicles) – 2036 AM Peak

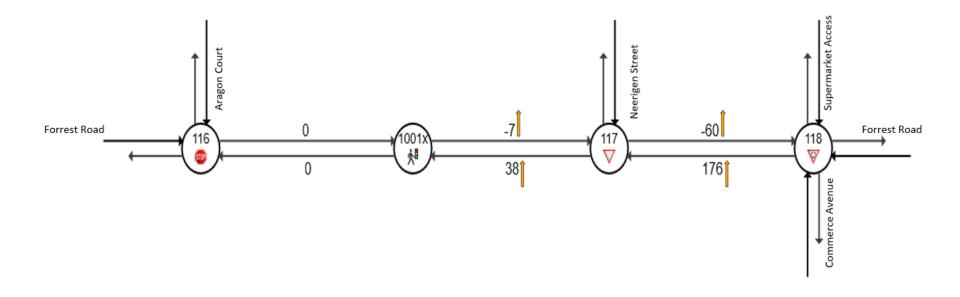


Figure 3.12 Forrest Road Network – Flow inconsistencies (vehicles) – 2036 PM Peak

4 Individual Intersection Modelling Results – Opening year (2026)

4.1 Introduction

This section details the network and intersection performance at the prescribed locations that were required to be modelled as per the TMIF requirements under the 2026 traffic forecasts for both the Do Nothing and Do Something (grade separated scenarios) in the AM and PM peak periods.

This section also provides recommendations on changes to geometry and intersection control wherever necessary/appropriate, noting the previous comments with regards to context in which this has been executed.

Summary results are provided in this section of the report for ease of reference, with detailed outputs provided in Appendix C.

4.2 SWH/ William Street/ Bedfordale Road

4.2.1 2026 Do Nothing Scenario

Figure 6.1 represents the existing layout at the intersection of SWH/ William Street/ Bedfordale Hill Road.

Figure 4.2 and Figure 4.3 show the degree of saturation at the SWH/ William Street/ Bedfordale Hill Road intersection in the AM and PM peak periods respectively in the 2026 Do Nothing scenario. In this scenario, the intersection is forecast to operate within capacity in both the AM and PM peaks with the highest degree of saturation being 0.664 and 0.830 respectively. The highest delay is forecast to be just over a minute in the PM peak on the left turn only lane of the east approach. Queuing is forecast to be reasonable with the longest modelled queue (95% back of queue) forecast to be around 150m on the south approach in the AM peak.

Due to the modelled intersection performance and the available capacity, no additional infrastructure upgrade is forecast to be needed for the year 2026. It is noted that whilst the intersection operates within capacity, further signal optimisation with LinSig might be required to optimise the signals to the satisfaction of MRWA.

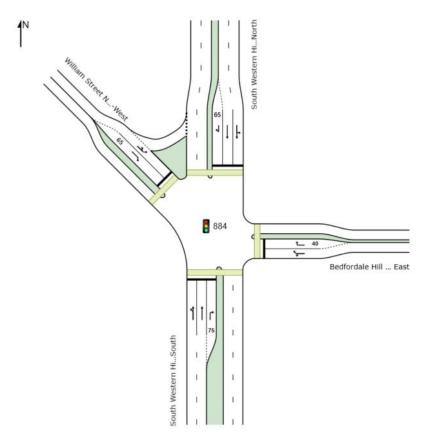
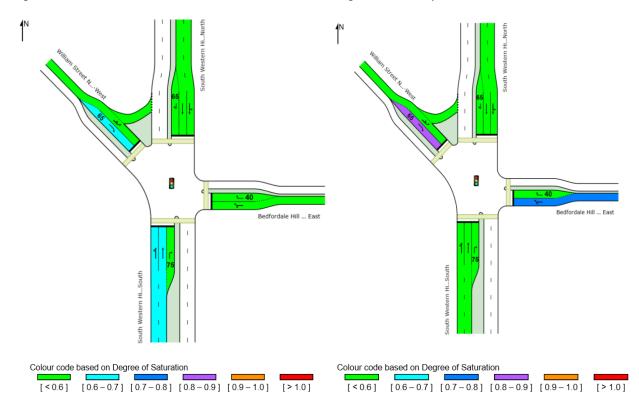



Figure 4.1 SWH/ William St/ Bedfordale Hill Rd – Existing intersection layout

4.3 SWH/ Dickens Place

4.3.1 2026 Do Nothing Scenario

Figure 4.4 shows the existing layout at the intersection of SWH/ Dickens Place.

Figure 4.5 and Figure 4.6 show the degree of saturation at the SWH/ Dickens Place intersection in the AM and PM peak periods respectively in the 2026 Do Nothing scenario. In this scenario, the intersection is forecast to operate within capacity in both the AM and PM peaks with the highest degree of saturation being 0.621 and 0.653 respectively. However, it should be noted that the west approach in the AM peak is forecast to experience delay of up to 80 seconds resulting in this approach being forecast to operate at LoS F. This is due to the large volume of through traffic on SWH meaning right turning vehicles from Dickens Place cannot find a gap in traffic on SWH.

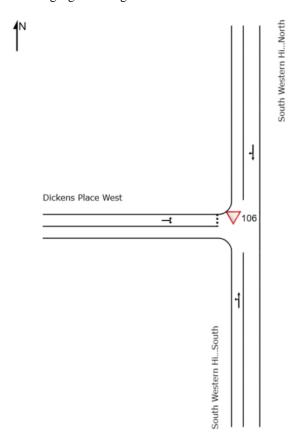
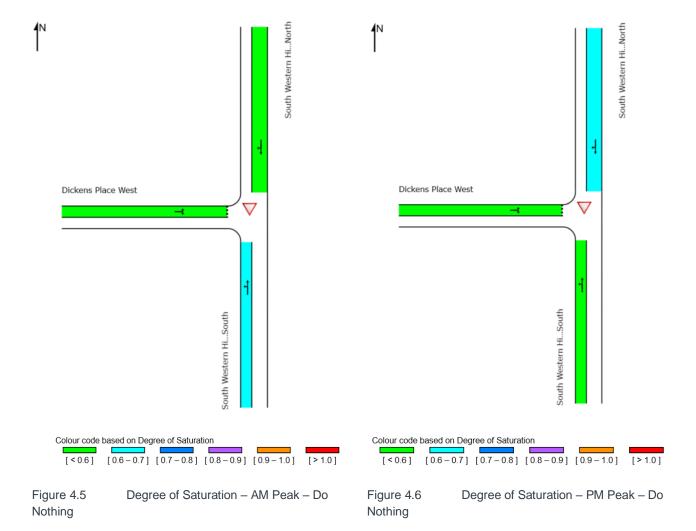



Figure 4.4 SWH/ Dickens PI – Existing intersection layout

4.3.2 2026 Do Something Scenario

A Do Something scenario was assessed for this intersection to reduce the delay on Dickens Place which is forecast to result in the approach operating at LoS F in the 2026 AM Do Nothing scenario.

It was noted that in the 2036 ROM24 plots SWH has been upgraded to two lanes in each direction. However, due to no 2026 ROM24 plots being made available, there was uncertainty regarding this duplication of SWH by the year 2026. Therefore, two Do Something models were created where one model assumes that SWH will be duplicated in 2026 and the other model assumes that SWH will remain a single lane carriageway.

In both the dual lane carriageway and single lane carriageway scenarios, turning pockets were provided for turning movements into Dickens Place and a right turn pocket was added for the right turning movement from Dickens Place. Additionally, the intersection was modelled as a two staged layout in SIDRA to replicate median storage being in place.

Figure 4.7 and Figure 4.8 represent the two stage proposed intersection layouts for SWH/ Dickens Place for the opening year 2026 with and without the duplication of SWH respectively.

Figure 4.9 and Figure 4.10 show the degree of saturation at the proposed two staged layout with SWH duplication while Figure 4.11 and Figure 4.12 show the degree of saturation at the proposed two staged layout of the SWH/ Dickens Place intersection without the SWH duplication in the AM and PM peak periods respectively in the 2026 Do Something scenario.

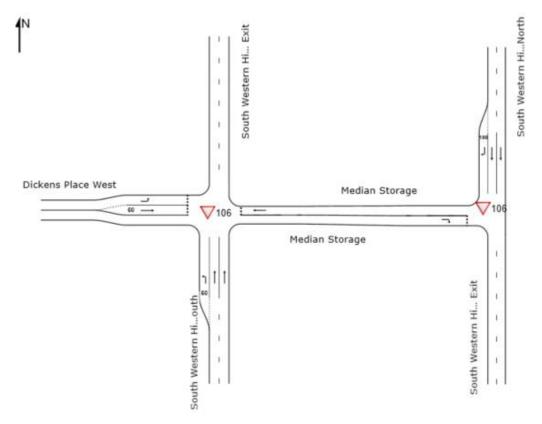


Figure 4.7 SWH/ Dickens PI – two staged intersection layout – with SWH duplication

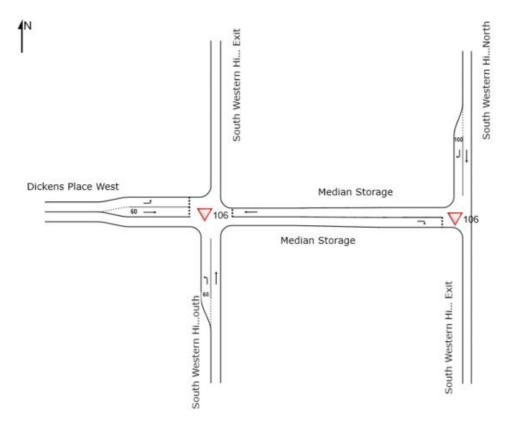


Figure 4.8 SWH/ Dickens PI – two staged intersection layout – without SWH duplication

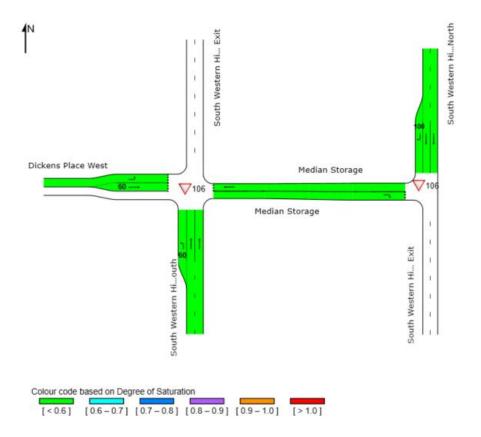


Figure 4.9 Degree of Saturation -SWH/ Dickens PI – AM Peak - with SWH duplication

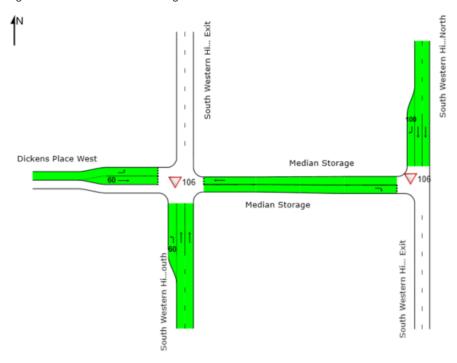


Figure 4.10 Degree of Saturation -SWH/ Dickens PI – PM Peak - with SWH duplication

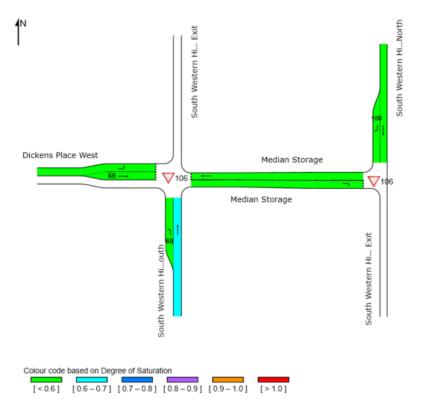


Figure 4.11 Degree of Saturation -SWH/ Dickens PI – AM Peak - without SWH duplication

Figure 4.12 Degree of Saturation -SWH/ Dickens PI – PM Peak - without SWH duplication

The intersection is forecast to operate within capacity in both dual and single lane configurations of SWH. Table 4.1 shows the intersection performance with and without the SWH duplication for the 2026 traffic forecasts.

Table 4.1 SWH/ Dickens PI – proposed two stage Intersection performance

Intersection	AM Peak			PM Peak		
layout	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)
Two staged with SWH duplication	A	0.306	1.4	A	0.283	1.7
Two staged without SWH duplication	A	0.612	1.5	A	0.567	1.6

As a result of the right turn from Dickens Place being two stages with the SWH duplication in place, the intersection is forecast to operate satisfactorily at LoS A in both peak hours. The intersection is forecast to operate within capacity with a maximum degree of saturation of 0.306 observed in the AM peak period and 0.283 observed in the PM peak period. The highest delay forecast for this option was for the left turn movement from Dickens Place into SWH with a delay of approximately 17 seconds and 10 seconds in the AM and PM peak periods respectively. The forecast queues are reasonable with the longest queue forecast to be around two metres on the west approach in the AM peak.

Without the SWH duplication, the intersection is forecast to operate at LoS A in both peak periods with a degree of saturation of 0.612 and 0.567 in the AM and PM peak periods respectively. Forecast delays and queues are significantly lower than in the Do Nothing scenario with the highest delay being 19 seconds on the west approach in the AM peak and highest queue being around three metres on the west approach in the AM peak.

4.4 SWH/ Stone Street

4.4.1 2026 Do Nothing Scenario

Figure 4.13 represents the existing layout at the intersection of SWH/ Stone Street.

Figure 4.14 and Figure 4.15 show the degree of saturation at the existing layout of the SWH/ Stone Street intersection in the AM and PM peak periods respectively in the 2026 Do Nothing scenario. In this scenario in both peak periods, the intersection is forecast to be over capacity in 2026 and operating at LoS F. The most significantly impacted approach is forecast to be the west approach due to the large volume of through traffic utilising SWH. This is due to the large volume of through traffic on SWH meaning right turning vehicles from Dickens Place cannot find a gap in traffic on SWH. This is forecast to lead to extensive queuing on the west approach with the longest forecast queues being up to 800m.

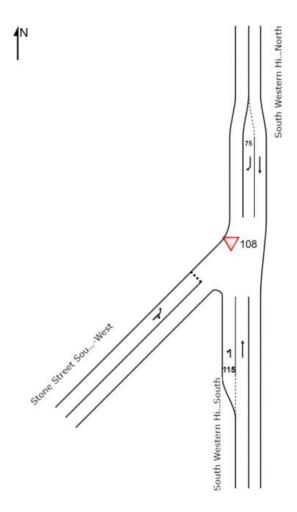
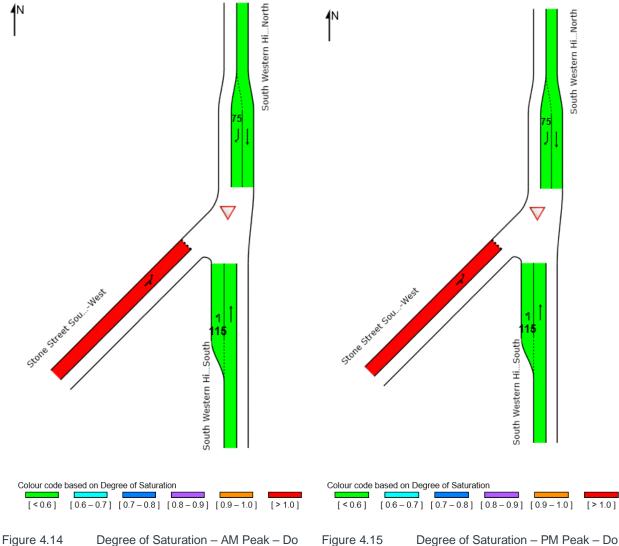



Figure 4.13 SWH/ Stone St – Existing intersection layout

Nothing

Nothing

4.4.2 Do Something Scenario

A Do Something scenario was assessed for this intersection to reduce the delay and increase the capacity on Stone Street which is forecast to operate at LoS F and above its capacity in both peaks in the Do Nothing scenario.

Again, two Do Something models were created where one model assumes that SWH will be duplicated by 2026 and the other assumes that SWH will remain a single lane carriageway. Pockets were added on SWH for turning movements into Stone Street. Following this, the intersection continued to perform within capacity. Therefore, a further intersection improvement was tested with a turn pocket added for the left turning movement from Stone Street into SWH. The intersection was modelled as a two staged layout in SIDRA to replicate median storage in both the single lane and dual lane carriage way options.

Figure 4.16 and Figure 4.17 represent the two stage proposed intersection layouts for the intersection of SWH/ Stone Street for the opening year 2026 with and without the duplication of SWH respectively.

Figure 4.18 and Figure 4.19 show the degree of saturation at the proposed two staged layout with SWH duplication and Figure 4.20 and Figure 4.21 show the degree of saturation at the proposed two staged layout of the SWH/ Stone Street intersection without the SWH duplication in the AM and PM peak periods respectively in the 2026 Do Something scenario.

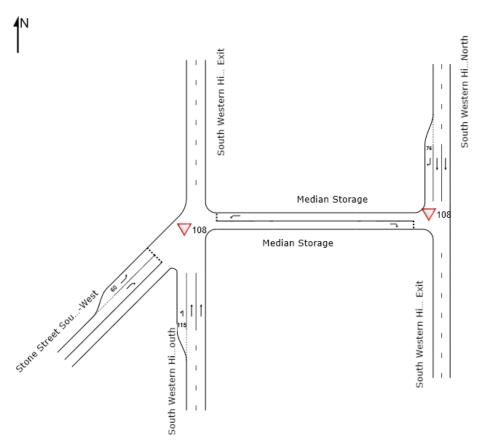


Figure 4.16 SWH/ Stone St – two staged intersection layout – with SWH duplication

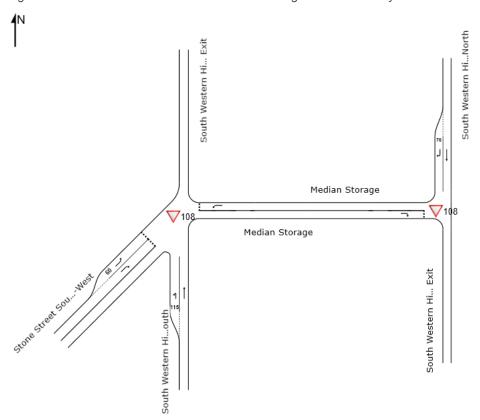


Figure 4.17 SWH/ Stone St – two staged intersection layout – without SWH duplication

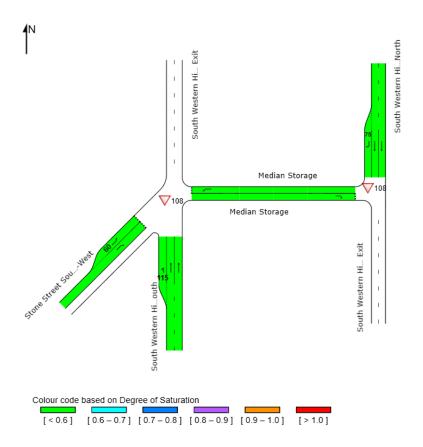


Figure 4.18

Degree of Saturation -SWH/ Stone St — AM Peak - with SWH duplication

Median Storage

Median Storage

Median Storage

Median Storage

Colour code based on Degree of Saturation

[< 0.6] [0.5 - 0.7] [0.7 - 0.8] [0.8 - 0.9] [0.9 - 1.0] [> 1.0]

Figure 4.19 Degree of Saturation -SWH/ Stone St – PM Peak - with SWH duplication

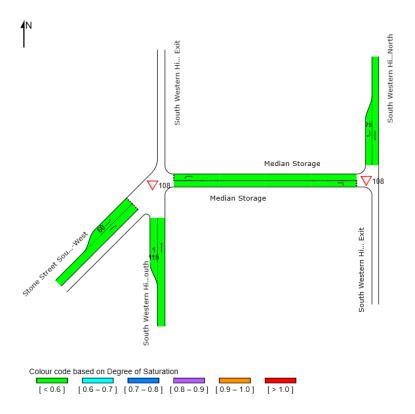


Figure 4.20 Degree of Saturation -SWH/ Stone St – AM Peak - without SWH duplication

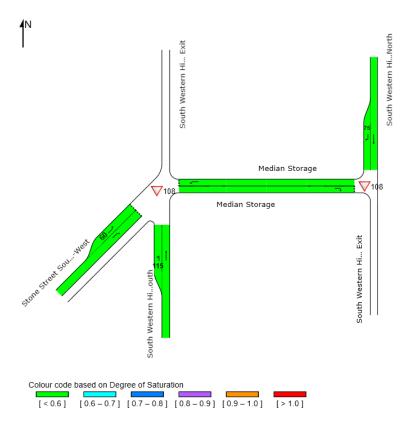


Figure 4.21 Degree of Saturation -SWH/ Stone St – PM Peak - without SWH duplication

The intersection is forecast to operate within capacity in both dual and single lane configurations of SWH. Table 4.2 shows the intersection performance with and without the SWH duplication for the 2026 traffic forecasts.

Table 4.2 SWH/ Stone St – proposed two stage Intersection performance

Intersection	AM Peak			PM Peak		
layout	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)
Two staged with SWH duplication	A	0.291	1.5	A	0.290	2.1
Two staged without SWH duplication	A	0.581	1.8	A	0.581	1.8

As a result of the right turn from Dickens Place being two stages with the SWH duplication in place, the intersection is forecast to operate satisfactorily at LoS A in both peak hours. The intersection is forecast to operate within capacity with a maximum degree of saturation of 0.291 in the AM peak period and 0.290 in the PM peak period. The highest delay forecast for this option was for the left turn movement from Stone Street into SWH with a delay of approximately 23 seconds and 13 seconds in the AM and PM peak periods respectively. The forecast queues are negligible with the longest queue forecast to be around three metres on the west approach in the AM peak.

Without the SWH duplication, the intersection is forecast to operate at LoS A in both peak periods with a degree of saturation of 0.581 in both the AM and PM peak periods respectively. Forecast delays and queues are significantly lower than in the Do Nothing scenario with the highest delay being 27 seconds for the left turn from the west approach in the AM peak and highest queue being around three metres on the west approach in the AM peak.

4.5 SWH/ Eleventh Road

4.5.1 2026 Do Nothing Scenario

Figure 4.22 shows the existing layout at the intersection of SWH/ Eleventh Road.

Figure 4.23 and Figure 4.24 show the degree of saturation at the existing layout of the SWH/ Dickens Place intersection in the AM and PM peak periods respectively in the 2026 Do Nothing scenario. This layout is forecast to result in the intersection being oversaturated and operating at LoS F in both the peak periods in the year 2026. Again, the west approach is forecast to experience significant delay and queuing due to the large volume of through traffic using SWH meaning right turning vehicles from Eleventh Road cannot find a gap in traffic on SWH. The longest queue of around 730m is forecast on the west approach.

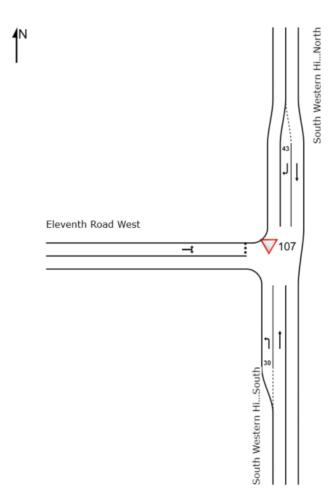
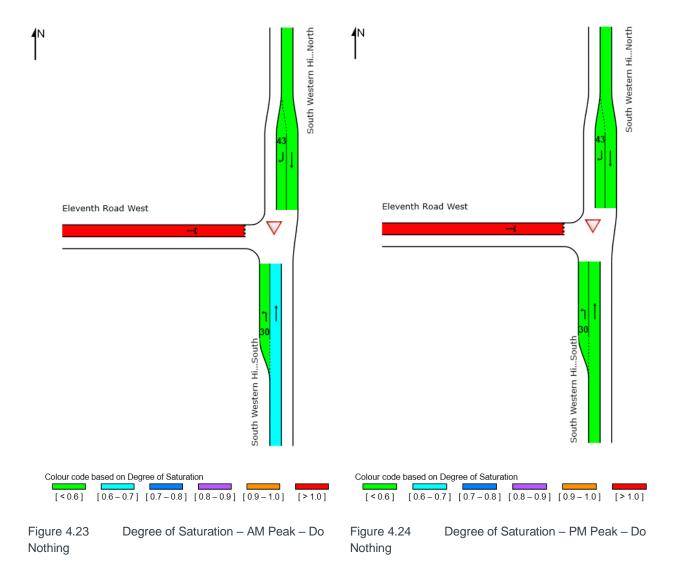



Figure 4.22 SWH/ Eleventh Road – Existing intersection layout

4.5.1.1 2026 Do Something Scenario

A Do Something scenario was assessed for this intersection to reduce the delay and increase the capacity on Stone Street which is forecast to operate at LoS F and above its capacity in both peaks in the Do Nothing scenario.

Again, two Do Something models were created where one model assumes that SWH will be duplicated in 2026 and the other model assumes that SWH will remain a single lane carriageway. A turn pocket was added in both scenarios for the left turning movement from Eleventh Road into SWH. Additionally, the intersection was modelled as a two staged layout in SIDRA to replicate a median storage in both the single lane and dual lane carriage way options.

Figure 4.25 and Figure 4.26 represent the two stage proposed intersection layouts for the intersection of SWH/ Stone Street for the opening year 2026 with and without the duplication of SWH respectively.

Figure 4.27 and Figure 4.28 show the degree of saturation at the proposed two staged layout with SWH duplication and Figure 4.29 and Figure 4.30 show the degree of saturation at the proposed two staged layout of the SWH/ Stone Street intersection without the SWH duplication in the AM and PM peak periods respectively in the 2026 Do Something scenario.

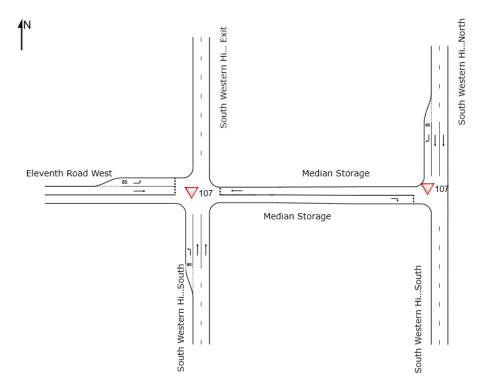


Figure 4.25 SWH/ Eleventh Road – two staged intersection layout – with SWH duplication

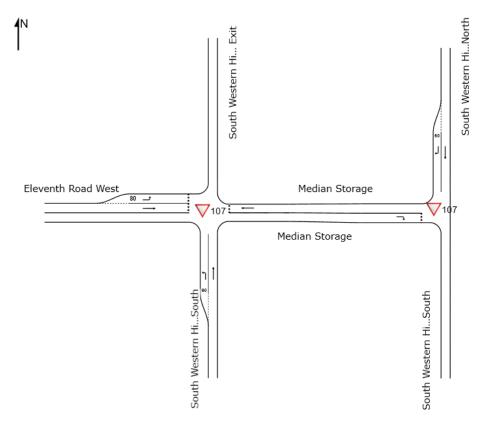


Figure 4.26 SWH/ Eleventh Road – two staged intersection layout – without SWH duplication

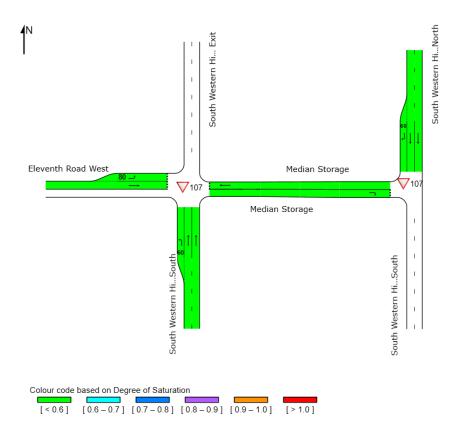


Figure 4.27 Degree of Saturation -SWH/ Eleventh Rd – AM Peak - with SWH duplication

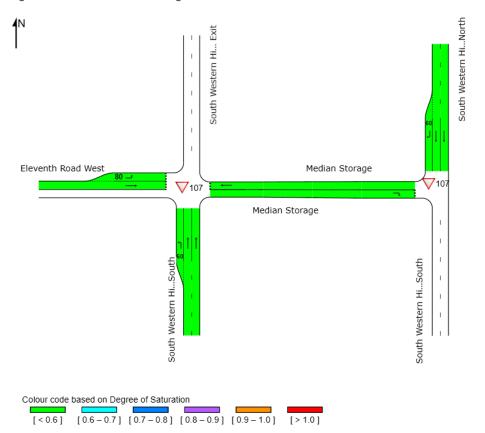


Figure 4.28 Degree of Saturation -SWH/ Eleventh Rd – PM Peak - with SWH duplication

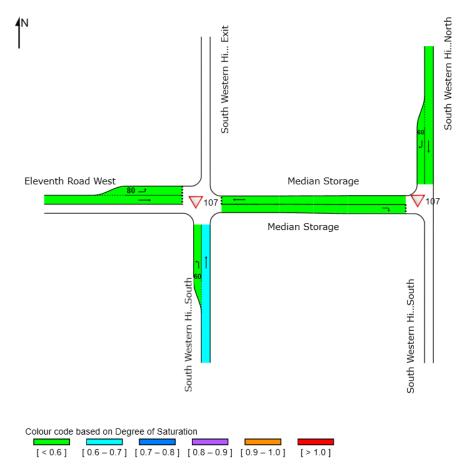


Figure 4.29 Degree of Saturation -SWH/ Eleventh Rd – AM Peak - without SWH duplication

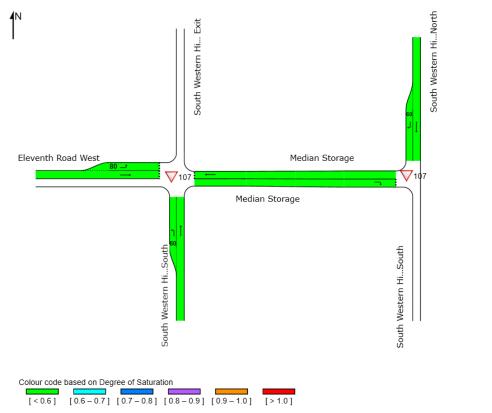


Figure 4.30 Degree of Saturation -SWH/ Eleventh Rd – PM Peak - without SWH duplication

The intersection is forecast to operate within capacity in both dual and single lane configurations of SWH. Table 4.3 shows the intersection performance with and without the SWH duplication for the 2026 traffic forecasts.

Table 4.3 SWH/ Eleventh Road – proposed two stage Intersection performance

Intersection layout	AM Peak			PM Peak		
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)
Two staged with SWH duplication	A	0.317	2.3	A	0.296	2.5
Two staged without SWH duplication	A	0.633	2.0	A	0.593	2.1

As a result of the right turn from Eleventh Road being two stages with the SWH duplication in place, the intersection is forecast to operate satisfactorily at LoS A in both peak hours. The intersection is forecast to operate within capacity with a maximum degree of saturation of 0.317 in the AM peak period and 0.296 in the PM peak period. The highest delay forecast for this option was for the left turn movement from Eleventh Road into SWH with a delay of approximately 20 seconds and 12 seconds in the AM and PM peak periods respectively. The forecast queues are negligible with the longest queue forecast to be around three metres on the west approach in the AM peak.

Without the SWH duplication, the intersection is forecast to operate at LoS A in both peak periods with a degree of saturation of 0.633 in the AM peak period and 0.593 in the PM peak period. Forecast delays and queues are significantly lower than in the Do Nothing scenario with the highest delay being 22 seconds on the west approach in the AM peak and highest queue being below two metres on the west approach in the AM peak.

4.6 Eleventh Road/ Wungong Road

4.6.1 Do Nothing Scenario

Figure 4.31 and Figure 4.32 show the degree of saturation at the Eleventh Road/ Wungong Road intersection in the AM and PM peak periods respectively in the 2026 Do Nothing scenario. The intersection is forecast to perform satisfactorily operating at LoS A in both peak periods with a degree of saturation of 0.168 and 0.249 in the AM and PM peak periods respectively. There is negligible delay across the intersection with the highest forecast delay being around eight seconds on the east approach in the PM peak. There is also negligible queuing forecast at the intersection with the longest forecast queue being around four metres on the north approach in the PM peak period.

Due to the modelled intersection performance and the available capacity, no additional infrastructure upgrade is forecast to be needed for the year 2026.

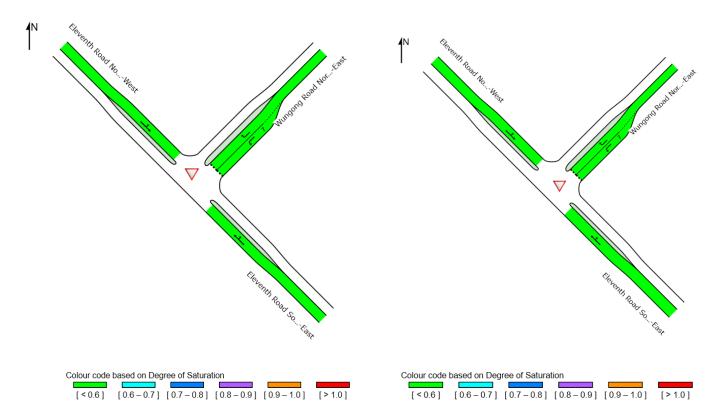


Figure 4.31 Degree of Saturation – AM Peak – Do Nothing

Figure 4.32 Degree of Saturation – PM Peak – Do Nothing

5 Network Modelling Results – Opening year (2026)

5.1 Introduction

The following section details the performance of the road networks in the Do Nothing (at grade) and Do Something (grade separated) scenarios that were required to be modelled as per the TMIF, under 2026 traffic forecasts.

5.2 Armadale Road Network

5.2.1 2026 Do Nothing Scenario (LX included and at grade)

The Do Nothing scenario assumes that the Armadale Road network will maintain the level crossing at grade in 2026. With the existing intersection layouts retained, the 2026 volume forecasts are applied to understand the performance of the road network.

The Armadale Road network in this scenario comprises the following intersections as shown schematically (as an output from SIDRA) in Figure 7.1:

- 1. Armadale Road/ Abbey Road/ Railway Avenue
- 2. Armadale level crossing
- 3. Armadale Road/ Streich Avenue
- 4. Armadale Road/ Orchard Avenue
- 5. Armadale Road/ Church Avenue.

Figure 5.2 and Figure 5.3 show the degree of saturation at the Armadale Road network with the Level crossing at grade in the AM and PM peak periods respectively in the 2026 Do Nothing (LX at grade) scenario.

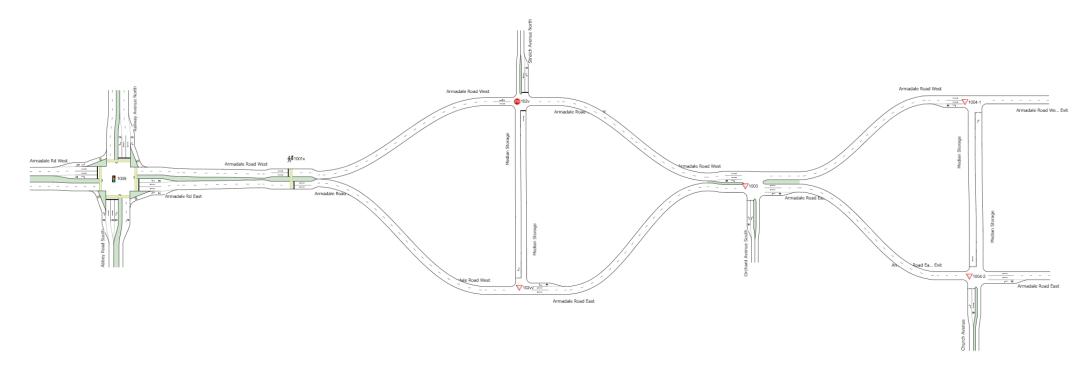
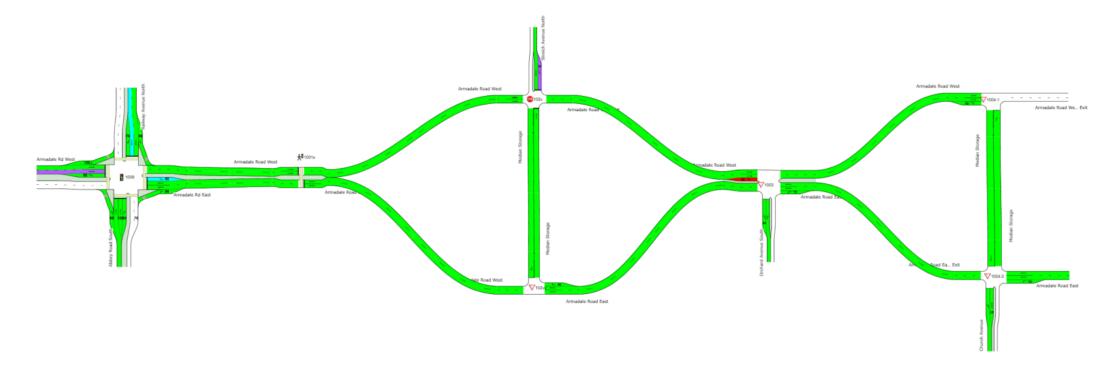



Figure 5.1 Armadale Road Network – Do Nothing Scenario (LX at grade)



Figure 5.2 Degree of Saturation - Armadale Road Network – AM Peak - Do Nothing Scenario (LX at grade)

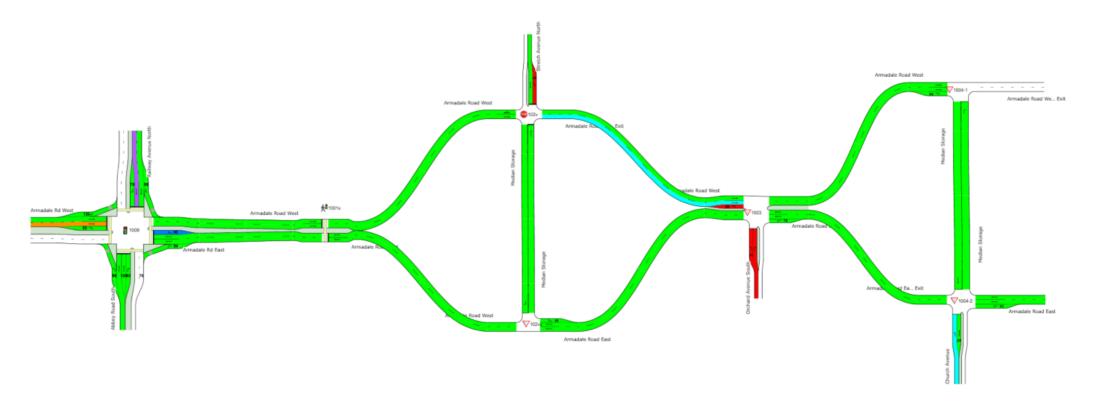


Figure 5.3 Degree of Saturation - Armadale Road Network – PM Peak - Do Nothing Scenario (LX at grade)

Table 7.1 summarises the intersection performance of all the intersections in the Armadale Road network in the Do Nothing scenario with the level crossing at grade.

Table 5.1 Armadale Road Network performance – Do Nothing Scenario (LX at grade)

Intersection	AM Peak			PM Peak		
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)
Overall Network	D	1.106	-	E	1.265	-
Armadale Rd/ Abbey Rd/ Railway Ave	С	0.837	32.3	D	0.927	37.9
Armadale level crossing	A	0.528	9.4	В	0.550	10.0
Armadale Rd/ Streich Ave	F	0.882	8.5	F	1.265	43.1
Armadale Rd/ Orchard Ave	F	1.106	29.8	F	1.192	44.8
Armadale Rd/ Church Ave	A	0.272	2.4	С	0.609	5.1

In both the AM and PM peak periods, the network is forecast to operate over capacity with Armadale Road / Streich Avenue and Armadale Road / Orchard Avenue being forecast to operate at LoS F. The predominant problem is insufficient gaps in traffic for the vehicles turning into Armadale Road from minor roads such as Streich Avenue and Orchard Avenue, and also for vehicles turning right from Armadale Road into Orchard Avenue.

5.2.2 2026 Do Nothing Scenario (grade separated)

Following confirmation from PTA regarding their intent to grade separate the level crossing on Armadale Road, this scenario analyses the Armadale Road network with grade separation in the future year whilst still retaining the existing layouts for the other intersections.

The Armadale Road network in this scenario comprises of the following intersections as shown schematically (as an output from SIDRA) in Figure 7.4:

- 1. Armadale Road/ Abbey Road/ Railway Avenue
- 2. Armadale Road/ Streich Avenue
- 3. Armadale Road/ Orchard Avenue
- 4. Armadale Road/ Church Avenue.

Figure 5.5 and Figure 5.6 and show the degree of saturation at the Armadale Road network with grade separation in the AM and PM peak periods respectively in the 2026 Do Nothing (grade separated) scenario.

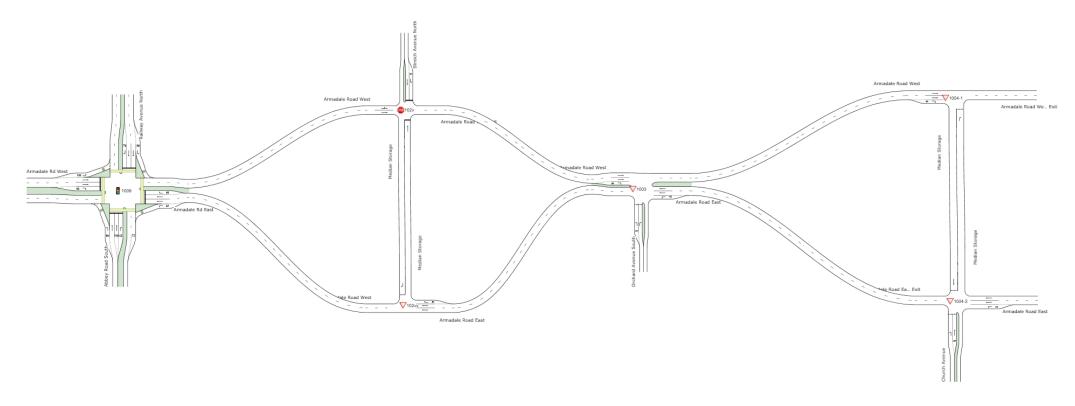


Figure 5.4 Armadale Road Network – Do Nothing Scenario (grade separated)

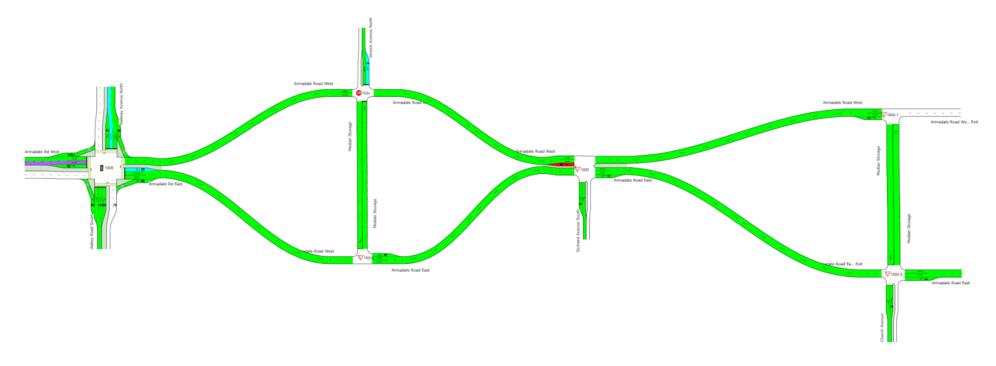


Figure 5.5 Degree of Saturation - Armadale Road Network – AM Peak - Do Nothing Scenario (grade separated)



Figure 5.6 Degree of Saturation - Armadale Road Network – PM Peak - Do Nothing Scenario (grade separated)

Table 7.2 details the network and individual intersection performance of all the intersections in the Armadale Road network in the Do Nothing scenario with grade separation.

Table 5.2 Armadale Road Network performance – Do Nothing Scenario (grade separated)

Intersection	AM Peak			PM Peak			
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	
Overall Network	D	1.106	-	Е	1.298	-	
Armadale Rd/ Abbey Rd/ Railway Ave	С	0.837	32.3	D	0.927	37.9	
Armadale Rd/ Streich Ave	E	0.671	5.4	F	0.960	13.1	
Armadale Rd/ Orchard Ave	F	1.106	29.8	F	1.298	50.6	
Armadale Rd/ Church Ave	A	0.272	2.4	С	0.609	5.1	

As in the at grade scenario, the network operates over-capacity in both the AM and PM peak periods with Armadale Road / Orchard Avenue being forecast to operate at LoS F in both peaks and Armadale Road / Streich Avenue being forecast to operate at LoS F in the PM peak. The predominant problem remains insufficient gaps in traffic for the vehicles turning into Armadale Road from minor roads such as Streich Avenue and Orchard Avenue, and also for vehicles turning right from Armadale Road into Orchard Avenue.

5.2.3 Do Something Scenario (grade separated)

To achieve satisfactory network performance, three scenarios with various layouts have been modelled and detailed as below:

- 1. Option 1: Fully signalised
- 2. Option 2: Roundabouts only
- 3. Option 3: Partial treatment with roundabouts and signals.

5.2.3.1 Option 1: Fully signalised

In this option, it is assumed that all intersections in the Armadale Road network which are currently priority controlled will be converted to signalised intersections in the future as shown in Figure 5.7.

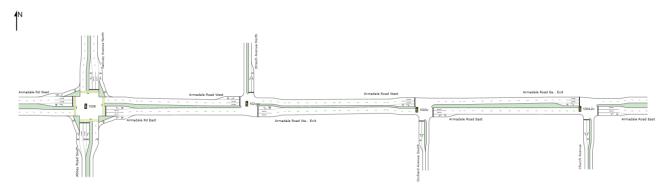


Figure 5.7 Armadale Road Network – Do Something Scenario (grade separated) – Fully signalised

At the intersection of Armadale Road/ Streich Avenue, the existing lane geometry is retained for the most part with the addition of a left turn pocket of 30m on the west approach of Armadale Road, and a reduction of the right turn pocket from 60m to 30m on the east approach of Armadale Road as shown in Figure 5.8.

At the intersection of Armadale Road/ Orchard Avenue, the existing lane geometry is retained for the most part with just the extension of the right turn pocket on the west approach of Armadale Road from 55m to 75m as shown in Figure 5.9.

The intersections of Armadale Road/ Church Avenue, as shown in Figure 5.10, and Armadale Road/ Abbey Road/ Railway Avenue will retain their existing layouts with Armadale Road/ Church Avenue becoming signalised.

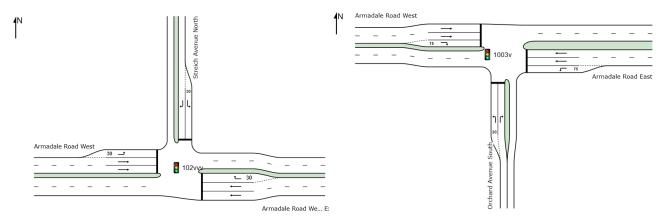


Figure 5.8 Armadale Road/ Streich Avenue – Signalised intersection option

Figure 5.9 Armadale Road/ Orchard Avenue – Signalised intersection option

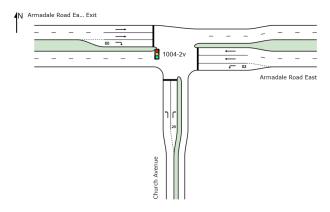


Figure 5.10 Armadale Road/ Church Avenue – Signalised intersection option

Figure 5.11 and Figure 5.12 show the degree of saturation at the Armadale Road network with grade separation and all intersections signalised in the AM and PM peak periods respectively in the 2026 Do Something (grade separated) scenario.

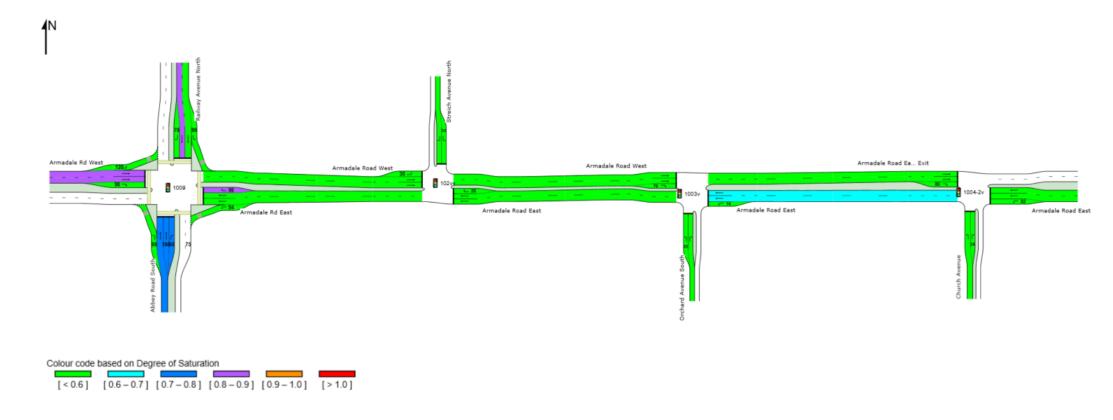


Figure 5.11 Degree of Saturation – Armadale Road Network – Do Something Scenario (grade separated) – Fully signalised – AM Peak

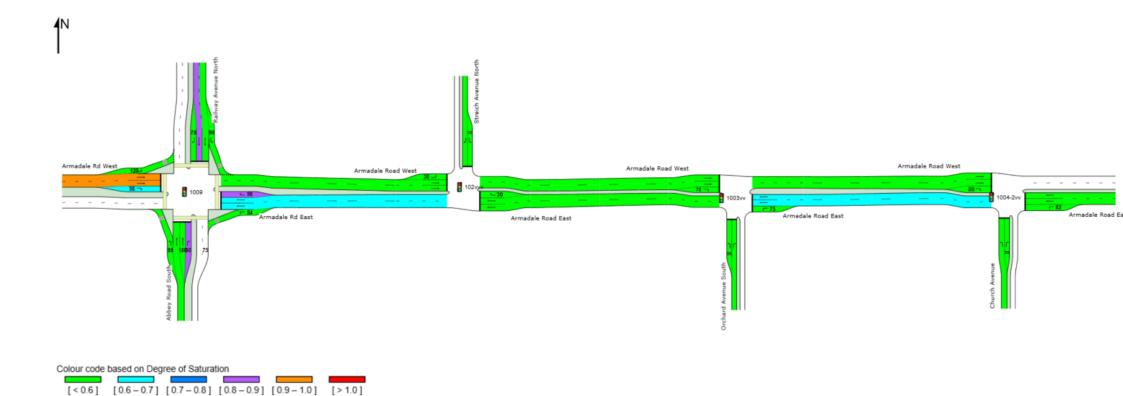


Figure 5.12 Degree of Saturation – Armadale Road Network – Do Something Scenario (grade separated) – Fully signalised – PM Peak

Table 7.3 details the performance of all the intersections in the Armadale Road Network in the Do Something scenario with all intersections signalised.

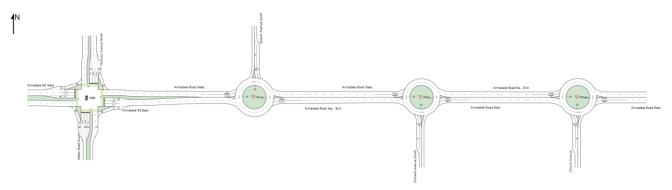
Table 5.3 Armadale Road Network performance – Do Something Scenario (grade separated) – Fully signalised

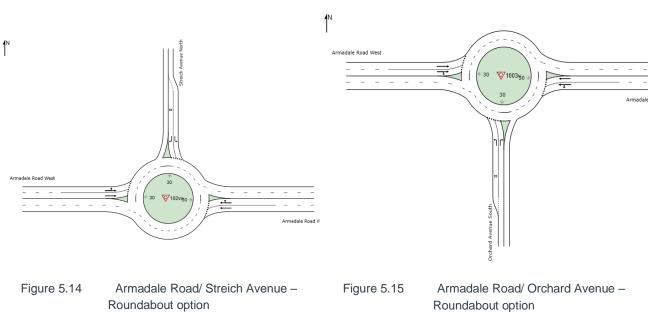
Intersection	AM Peak			PM Peak			
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	
Overall Network	D	0.831	-	D	0.920	-	
Armadale Rd/ Abbey Rd/ Railway Ave	С	0.831	30.3	D	0.920	35.2	
Armadale Rd/ Streich Ave	A	0.525	5.5	A	0.551	7.2	
Armadale Rd/ Orchard Ave	В	0.682	14.7	В	0.656	13.0	
Armadale Rd/ Church Ave	В	0.441	10.1	В	0.475	13.9	

The fully signalised Armadale Road network and all of the intersections within the network are forecast to operate satisfactorily and within capacity. It is noted that whilst all of the intersections operate within capacity, further signal optimisation with LinSig would be required to optimise the signals to the satisfaction of MRWA.

5.2.3.2 Option 2: Roundabouts only

In this option, it is assumed that all intersections in the Armadale Road network which are currently priority controlled will be converted to roundabouts in the future as shown schematically (as an output from SIDRA) in Figure 5.13.




Figure 5.13 Armadale Road Network – Do Something Scenario (grade separated) – Roundabouts only

The intersection of Armadale Road/ Streich Avenue is converted to a two-lane circulating roundabout with no turning pockets on Armadale Road. The north approach of Streich Avenue will adopt a right turn pocket of 60m as shown in Figure 5.14.

The intersection of Armadale Road/ Orchard Avenue is converted to a two lane circulating roundabout with no turning pockets on Armadale Road. The south approach of Orchard Avenue retains the same lane geometry as the existing layout as shown in Figure 5.15.

The intersection of Armadale Road/ Church Avenue is converted to a two-lane circulating roundabout with no turning pockets on Armadale Road. The south approach of Church Avenue retains the same lane geometry as the existing layout as shown in Figure 5.16.

The intersection of Armadale Road/ Abbey Road/ Railway Avenue will retain its existing layout in this scenario.

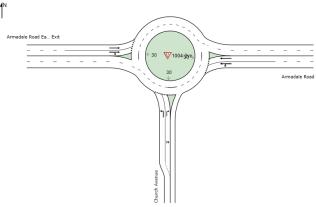


Figure 5.16 Armadale Road/ Church Avenue – Roundabout option

Figure 5.17 and Figure 5.18 show the degree of saturation at the Armadale Road network with grade separation and all intersections converted roundabouts in the AM and PM peak periods respectively in the 2036 Do Something (grade separated) scenario.

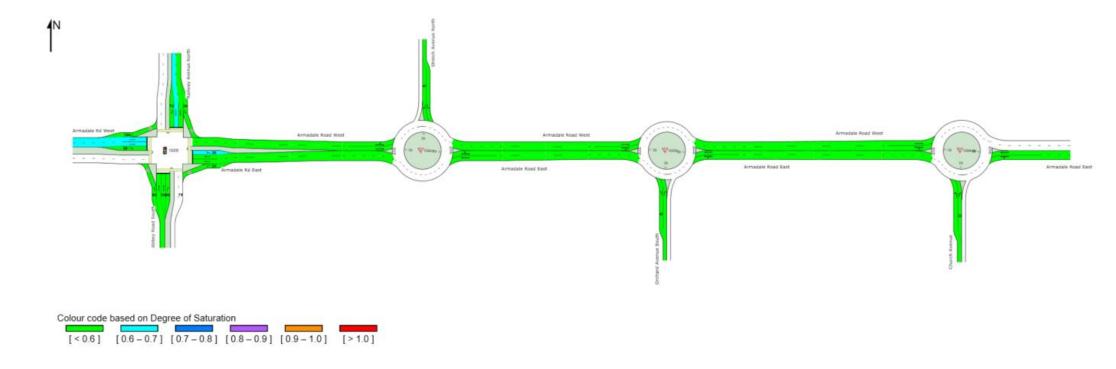


Figure 5.17 Degree of Saturation - Armadale Road Network - Do Something Scenario (grade separated) - Roundabouts only - AM Peak

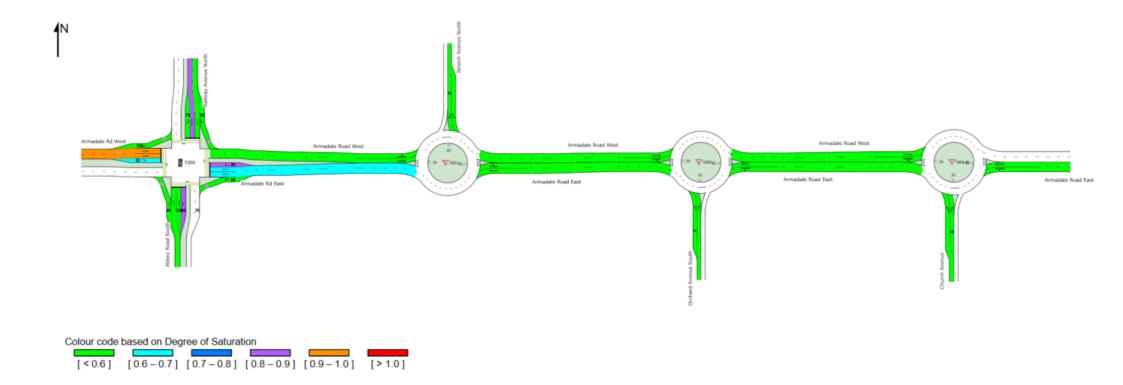


Figure 5.18 Degree of Saturation - Armadale Road Network - Do Something Scenario (grade separated) - Roundabouts only - PM Peak

Table 7.4 details the intersection performance of the Armadale Road Network in the Do Something scenario where all intersections, with exception of the intersection of Armadale Rd/ Abbey Rd/ Railway Ave, are converted to roundabouts.

Table 5.4 Armadale Road Network performance – Do Something Scenario (grade separated) – Roundabouts only

Intersection	AM Peak			PM Peak			
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	
Overall Network	D	0.683	-	D	0.920	-	
Armadale Rd/ Abbey Rd/ Railway Ave	С	0.683	30.9	С	0.920	34.7	
Armadale Rd/ Streich Ave	A	0.423	5.4	A	0.454	5.7	
Armadale Rd/ Orchard Ave	A	0.391	6.9	A	0.431	6.6	
Armadale Rd/ Church Ave	A	0.329	6.5	A	0.312	6.5	

With the grade separation and the conversion to roundabouts, the network performs satisfactorily in both the peak periods with all intersections operating with reasonable delay and queuing. It is noted that whilst all the intersections operate within capacity, further signal optimisation with LinSig would be required to optimise the signals to the satisfaction of MRWA.

5.2.3.3 Option 3: Partial treatment with roundabouts and signals

In this option, it is assumed that two intersections in the Armadale Road network – Armadale Road/ Streich Avenue and Armadale Road/ Orchard Avenue – which are currently priority controlled will be converted to roundabouts and the intersection of Armadale Road/ Church Avenue will be converted to a signalised intersection in the future as shown in Figure 7.19. Different layouts and combinations of signalised intersections and roundabouts were tested and the layout adopted above was found to be the best performing network configuration.

Figure 5.20 and Figure 5.21 show the degree of saturation at the Armadale Road network with grade separation and partial treatment with roundabouts and signalisation in the AM and PM peak periods respectively in the 2026 Do Something (grade separated) scenario.

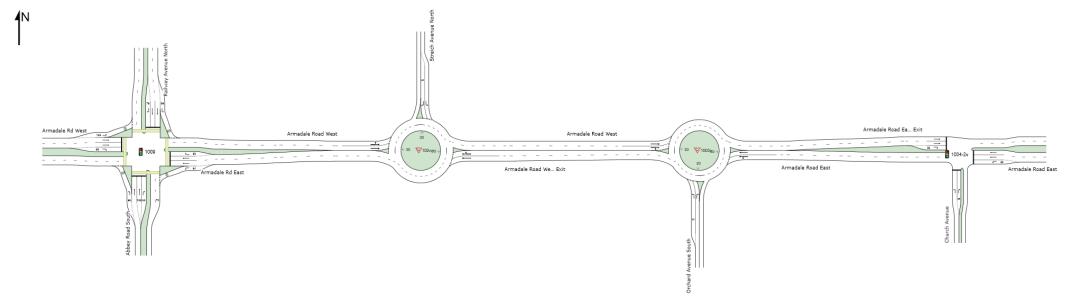


Figure 5.19 Armadale Road Network – Do Something Scenario (grade separated) – partial treatment

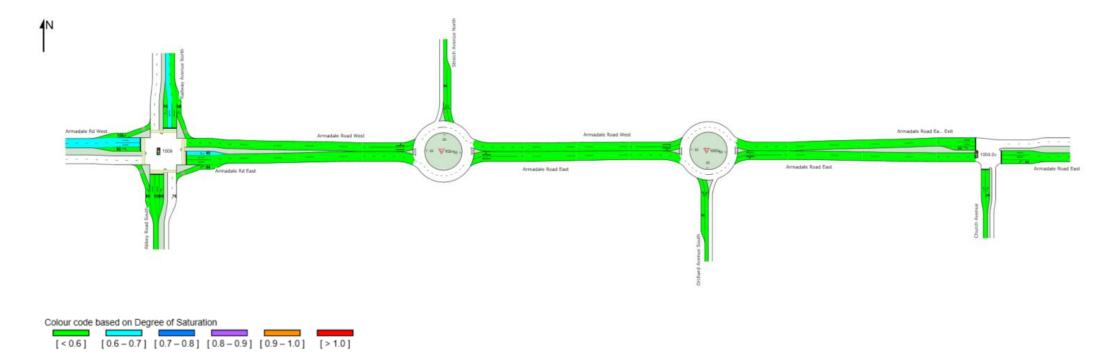
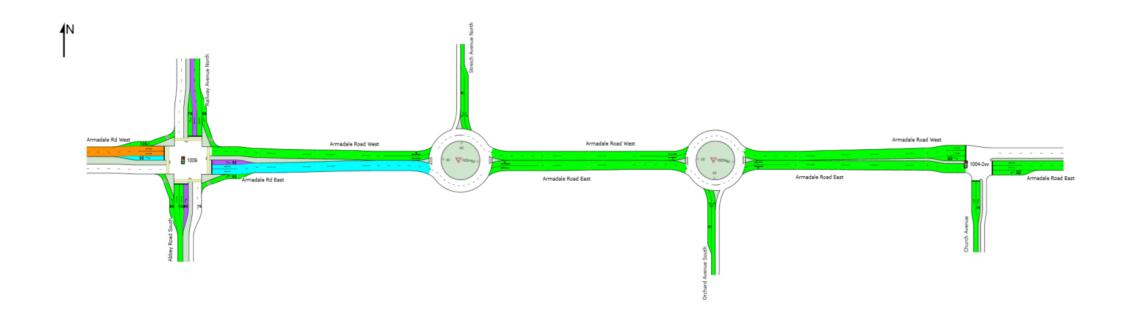



Figure 5.20 Degree of Saturation - Armadale Road Network - Do Something Scenario (grade separated) - Partial treatment - AM Peak

Colour code based on Degree of Saturation

[<0.6] [0.6-0.7] [0.7-0.8] [0.8-0.9] [0.9-1.0] [>1.0]

Figure 5.21 Degree of Saturation - Armadale Road Network - Do Something Scenario (grade separated) - Partial treatment - PM Peak

All intersections within this network would adopt the same layouts as detailed in the previous sections.

Table 7.5 details intersection performance of the Armadale Road Network in the Do Something scenario.

Table 5.5 Armadale Road Network performance – Do Something Scenario (grade separated) – Partial treatment

Intersection	AM Peak			PM Peak			
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	
Overall Network	D	0.683	-	D	0.920	-	
Armadale Rd/ Abbey Rd/ Railway Ave	С	0.683	30.9	С	0.920	34.7	
Armadale Rd/ Streich Ave	A	0.423	5.4	A	0.454	5.7	
Armadale Rd/ Orchard Ave	A	0.391	6.8	A	0.431	6.6	
Armadale Rd/ Church Ave	В	0.595	11.1	В	0.564	11.6	

With the grade separation and the adopted intersection layouts, the network performs satisfactorily in both the peak periods with all intersections operating within capacity. It is noted that whilst all the intersections operate within capacity, further signal optimisation with LinSig would be required to address these issues and optimise the signals to the satisfaction of MRWA.

5.3 Church Avenue Road Network

5.3.1 Do Nothing Scenario (LX included and at grade)

This scenario assumes that the Church Avenue Road network will have the level crossing at grade. With the existing intersection layouts retained, the 2026 volume forecasts are applied to understand the performance of the road network.

The Church Avenue Road network in this scenario comprises of the following intersections as shown schematically (as an output from SIDRA) in Figure 5.22:

- 1. Church Avenue/ William Street
- 2. Church Avenue/ Hobbs Drive/ Commerce Avenue
- 3. Church Avenue/ Green Avenue/ Wungong Road
- 4. Church Avenue level crossing.

Figure 5.23 and Figure 5.24 show the degree of saturation at the Church Avenue Road network with the level crossing at grade in the AM and PM peak periods respectively in the 2026 Do Nothing (LX at grade) scenario.

Figure 5.22 Church Avenue Road Network – Do Nothing Scenario (LX at grade)

Figure 5.23 Degree of Saturation - Church Avenue Road Network - AM Peak - Do Nothing Scenario (LX at grade)

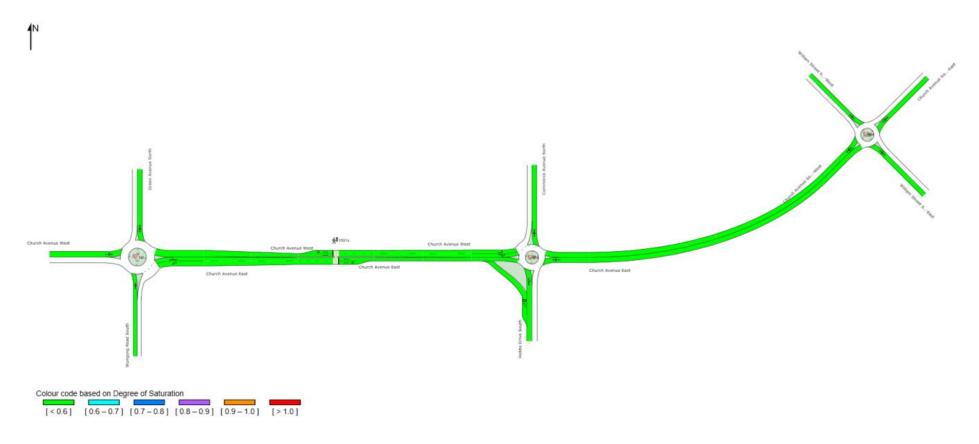


Figure 5.24 Degree of Saturation - Church Avenue Road Network – PM Peak - Do Nothing Scenario (LX at grade

Table 7.6 details the performance of all the intersections in the Church Avenue network.

Table 7.6 details the performance of all the intersections in the Church Avenue Road network.

Table 5.6 Church Avenue Road Network performance – Do Nothing Scenario (LX at grade)

Intersection		AM Peak		PM Peak		
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)
Overall Network	В	0.697	-	В	0.507	-
Church Avenue/ William Street	A	0.322	5.8	В	0.479	6.5
Church Avenue LX	A	0.272	3.0	A	0.239	2.9
Church Avenue/ Hobbs Drive/ Commerce Avenue	A	0.366	4.8	A	0.461	5.1
Church Avenue/ Green Avenue/ Wungong Road	A	0.697	6.5	A	0.507	5.6

With the existing network layout, the network and the relevant intersections perform satisfactorily with all intersections operating with reasonable delay and queuing.

However as confirmed by PTA, the Church Avenue Road network is to be grade separated in the future.

5.3.2 Do Nothing Scenario (grade separated)

The scenario analyses the Church Avenue network with grade separation in the future year whilst still retaining the existing layouts for the other intersections.

The Church Avenue network in this scenario comprises of the following intersections as shown in Figure 7.25:

- 1. Church Avenue/ William Street
- 2. Church Avenue/ Hobbs Drive/ Commerce Avenue
- 3. Church Avenue/ Green Avenue/ Wungong Road.

Figure 5.26 and Figure 5.27 show the degree of saturation at the Church Avenue Road network with grade separation in the AM and PM peak periods respectively in the 2026 Do Nothing (grade separated) scenario.

Figure 5.25 Church Avenue Road Network – Do Nothing Scenario (grade separated)

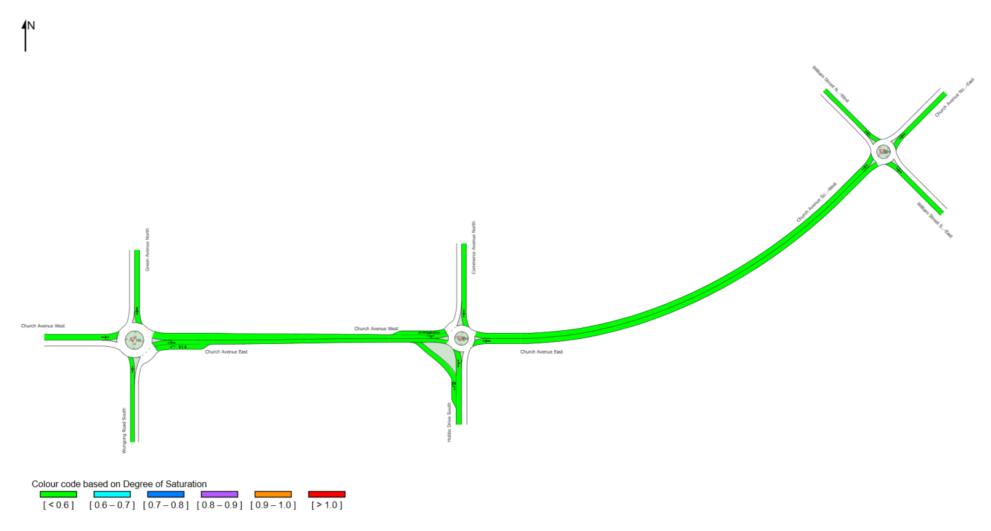


Figure 5.26 Degree of saturation - Church Avenue Road Network – AM Peak - Do Nothing Scenario (grade separated)

Figure 5.27 Degree of saturation - Church Avenue Road Network – PM Peak - Do Nothing Scenario (grade separated)

Table 7.7 details the performance of all the intersections in the Church Avenue network.

Table 5.7 Church Avenue Network performance – Do Nothing Scenario (grade separated)

Intersection	AM Peak			PM Peak			
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	
Overall Network	В	0.368	-	В	0.479	-	
Church Avenue/ William Street	A	0.322	5.8	A	0.479	6.5	
Church Avenue/ Hobbs Drive/ Commerce Avenue	A	0.276	5.4	A	0.246	5.6	
Church Avenue/ Green Avenue/ Wungong Road	A	0.368	6.0	A	0.296	5.9	

With the grade separation and with no changes to the existing layout, the network and intersections perform satisfactorily with all intersection operating with reasonable delay and queueing.

Due to the network performing satisfactorily with just the grade separation, no additional infrastructure is expected to be required for the remaining intersections in the network.

5.4 Forrest Road Network

5.4.1 Do Nothing Scenario (LX included and at grade)

This scenario assumes that the Forrest Road network would still be at grade with the level crossing in place. With the existing intersection layouts retained, the 2026 volume forecasts are applied to understand the performance of the road network.

The Forrest Road network in this scenario comprises of the following intersections as shown schematically (as an output from SIDRA) in Figure 5.28:

- 1. Forrest Road/ Aragon Court
- 2. Forrest Road Level Crossing
- 3. Forrest Road/ Third Road/ Neerigen Street
- 4. Commerce Avenue/ Third Road/ Supermarket Access.

Figure 5.29 and Figure 5.30 show the degree of saturation at the Forrest Road network with the level crossing at grade in the AM and PM peak periods respectively in the 2026 Do Nothing (LX at grade) scenario.

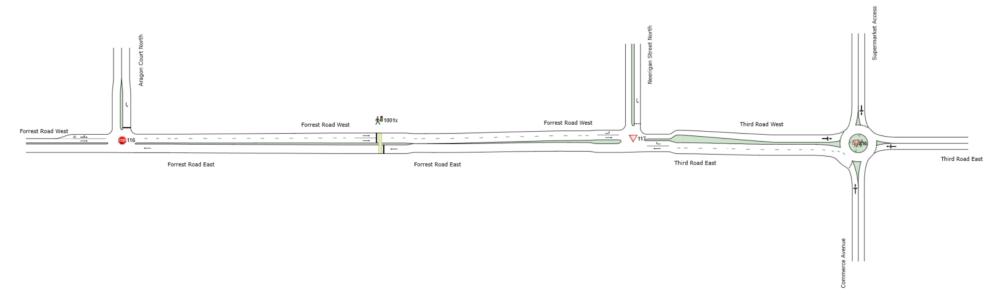


Figure 5.28 Forrest Road Network – Do Nothing Scenario (LX at grade)

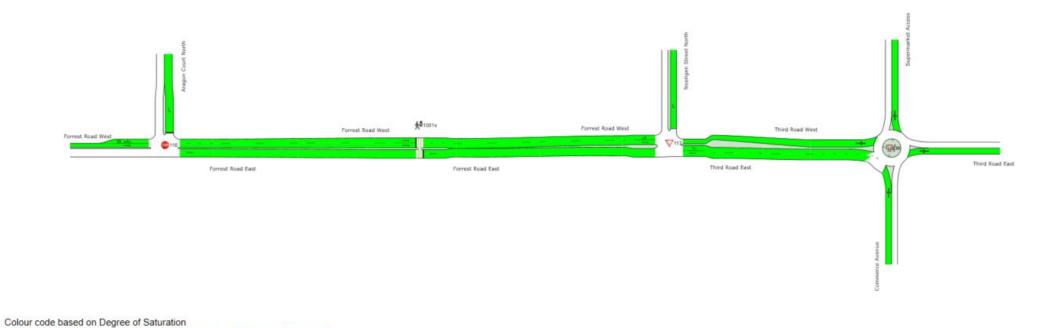
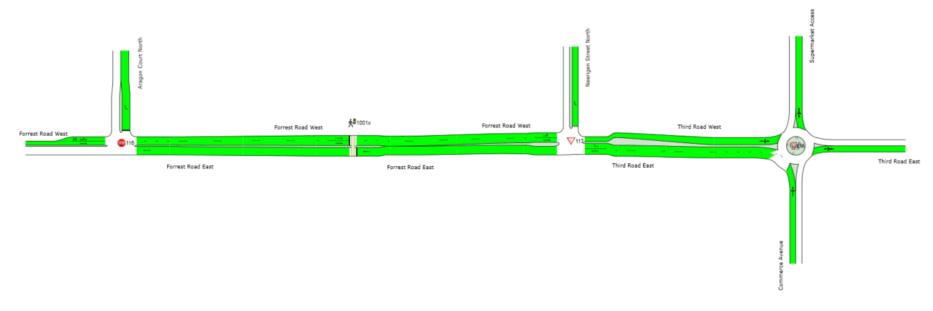



Figure 5.29 Degree of Saturation – Forrest Road Network – AM Peak – Do Nothing Scenario (LX at grade)

[<0.6] [0.6-0.7] [0.7-0.8] [0.8-0.9] [0.9-1.0] [>1.0]

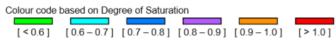


Figure 5.30 Degree of Saturation – Forrest Road Network – PM Peak – Do Nothing Scenario (LX at grade

Table 7.8 details the performance of all the intersections in the Forrest Road network.

Table 5.8 Forrest Road Network performance – Do Nothing Scenario (LX at grade)

Intersection	AM Peak			PM Peak			
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	
Overall Network	В	0.541	-	В	0.567	-	
Forrest Road/ Aragon Court	A	0.204	0.9	A	0.229	1.0	
Forrest Road LX	A	0.246	7.4	A	0.277	7.6	
Forrest Road/ Neerigan Street	A	0.370	2.0	A	0.374	1.9	
Third Road West/ Commerce Avenue	A	0.541	5.6	A	0.567	5.5	

With the existing network layout, the network and the relevant intersections perform satisfactorily with all intersections operating with reasonable delay and queueing.

However as confirmed by PTA, the Forrest Road network is to be grade separated in the future.

5.4.2 Do Nothing Scenario (grade separated)

This scenario analyses the Forrest Road network with grade separation in the future year, whilst still retaining the existing layouts for the other intersections.

The Forrest Road network in this scenario comprises of the following intersections as shown schematically (as an output from SIDRA) in Figure 7.31:

- 1. Forrest Road/ Aragon Court
- 2. Forrest Road Level Crossing
- 3. Forrest Road/ Third Road/ Neerigen Street
- 4. Commerce Avenue/ Third Road/ Supermarket Access.

Figure 5.32 and Figure 5.33 show the degree of saturation at the Forrest Road network with grade separation in the AM and PM peak periods respectively in the 2026 Do Nothing (grade separated) scenario.

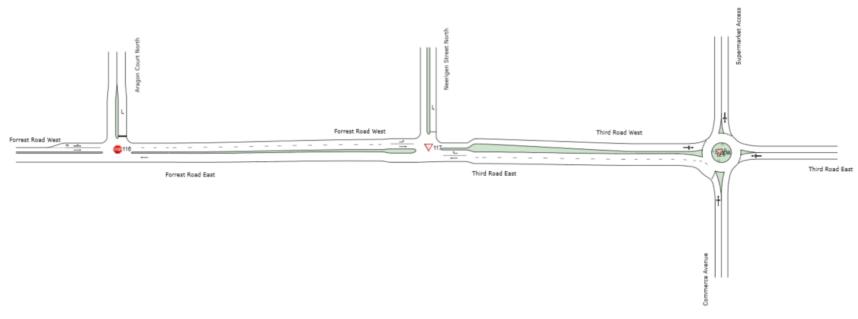


Figure 5.31 Forrest Road Network – Do Nothing Scenario (grade separated)

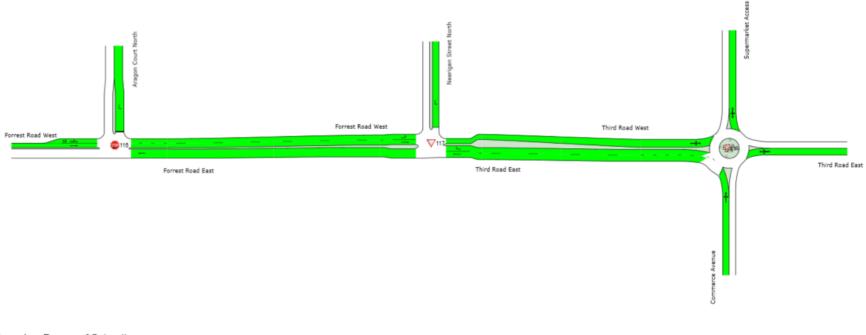
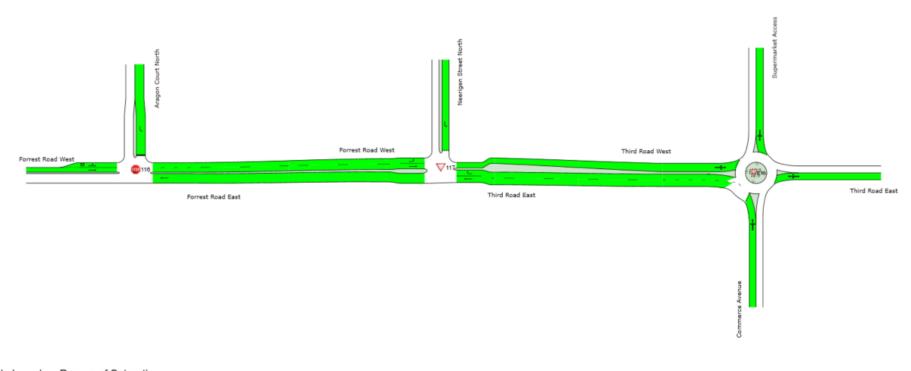



Figure 5.32 Degree of Saturation - Forrest Road Network - AM peak - Do Nothing Scenario (grade separated)

Colour code based on Degree of Saturation

[< 0.6] [0.6 - 0.7] [0.7 - 0.8] [0.8 - 0.9] [0.9 - 1.0] [> 1.0]

Figure 5.33 Degree of Saturation - Forrest Road Network – PM peak - Do Nothing Scenario (grade separated)

Table 7.9 details the performance of all the intersections in the Forrest Road network.

Table 5.9 Forrest Road Network performance – Do Nothing Scenario (grade separated)

Intersection	AM Peak			PM Peak			
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	
Overall Network	A	0.541	-	A	0.558	-	
Forrest Road/ Aragon Court	A	0.204	0.9	A	0.229	1.0	
Forrest Road/ Neerigan Street	A	0.375	2.1	A	0.380	2.0	
Third Road West/ Commerce Avenue/ Supermarket Access	A	0.541	5.3	A	0.558	5.3	

With the grade separation and with no changes to the existing layout, the intersections perform satisfactorily with all intersections operating with reasonable delay and queueing.

Due to the network performing satisfactorily with just the grade separation, no additional infrastructure is expected to be required for the remaining intersections in the network.

6 Individual Intersection Modelling Results – Opening year + 10 (2036)

6.1 Introduction

This section details the network and intersection performance at the prescribed locations as per the TMIF requirements under the 2036 traffic forecasts for both the Do Nothing and Do Something (grade separated scenarios) in the AM and PM peak periods.

This section also provides recommendations on changes to geometry and intersection control wherever necessary/appropriate, noting the previous comments with regards to context in which this has been executed.

Summary results are provided in this section of the report for ease of reference, with detailed outputs provided in Appendix D.

6.2 SWH/ William Street/ Bedfordale Road

6.2.1 2036 Do Nothing Scenario

Figure 6.1 represents the existing layout at the intersection of SWH/ William Street/ Bedfordale Hill Road.

Figure 6.2 and Figure 6.3 show the degree of saturation at the existing layout of the SWH/ William Street/ Bedfordale Hill Road intersection in the AM and PM peak periods respectively in the 2036 Do Nothing scenario.

While the intersection is forecast to operate within capacity in the AM peak with the degree of saturation being 0.951, in the PM peak the intersection is forecast to be oversaturated. Both west and east approaches are forecast to operate above capacity in the PM peak with the highest degree of saturation being 2.054 on the right/through lane on the east approach. This is forecast to result in extensive delays at the intersection in the PM peak with the highest forecast delay being over 16 minutes. Additionally, queuing is forecast to be significant on the south and west approaches with the longest modelled queue (95% back of queue) forecast to be around 540m on the west approach in the PM peak.

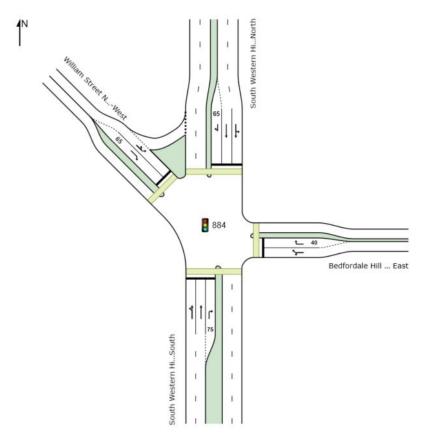


Figure 6.1 SWH/ William St/ Bedfordale Hill Rd – Existing intersection layout

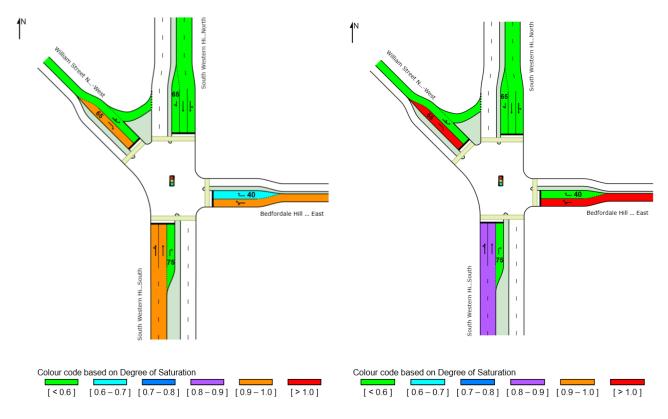


Figure 6.2 Degree of Saturation – AM Peak – Do Nothing

Figure 6.3 Degree of Saturation – PM Peak – Do Nothing

6.2.2 2036 Do Something Scenario

A Do Something scenario was assessed for this intersection to improve capacity and reduce the delay at the intersection.

In this scenario, the left lane on the west approach was changed to a left, through and right shared lane as shown in Figure 6.4 due to the right turn lane being oversaturated in the Do Nothing scenario. Additionally, the signal cycle time was increased to 150 seconds in the PM peak to reduce the amount of lost time within each cycle.

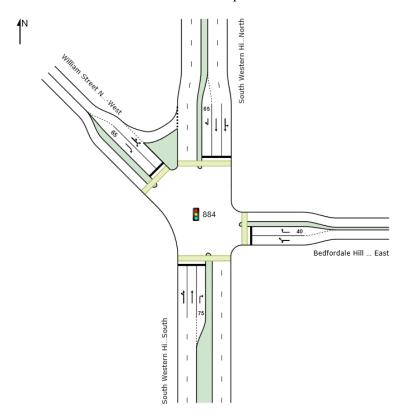
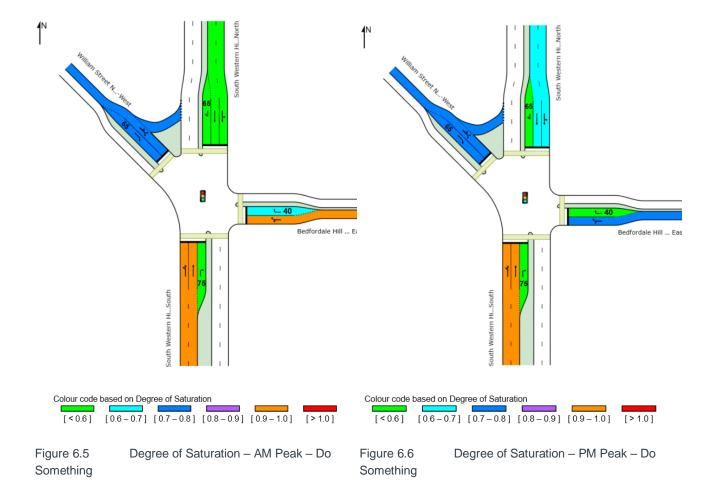



Figure 6.4 SWH/ William St/ Bedfordale Hill Rd – Modified intersection layout

Figure 6.5 and Figure 6.6 show the degree of saturation at the proposed layout of the SWH/ William Street/ Bedfordale Hill Road intersection in the AM and PM peak periods respectively in the 2036 Do Something scenario.

The results of these modifications to the intersection show that if implemented, the intersection is forecast to operate just under capacity in both the AM and PM peaks, with the highest degree of saturation forecast to be 0.951 and 0.939 respectively as shown in Table 6.1. The highest delay in this scenario is forecast to be to around 65 seconds in the AM peak and 78 seconds in the PM peak period. Whilst queueing of around 410m and 380m is still observed on the south approach in the AM and PM peak periods, the maximum queue length forecast on the west approach is forecast to reduce from around 540m to 170m.

Table 6.1 SWH/ William St/ Bedfordale Hill Rd – Intersection performance

Intersection layout	AM Peak			PM Peak		
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)
Do Nothing	D	0.951	49.6	F	2.054	123.7
Do Something	D	0.951	49.0	Е	0.939	57.1

6.3 SWH/ Dickens Place

6.3.1 2036 Do Nothing Scenario

Figure 6.7 shows the existing layout at the intersection of SWH/ Dickens Place.

Figure 6.8 and Figure 6.9 show the degree of saturation at the existing layout of the SWH/ Dickens Place intersection in the AM and PM peak periods respectively in the 2036 Do Nothing scenario.

In the Do Nothing scenario, the intersection is forecast to be oversaturated and operate at LoS F in both the peak periods in the year 2036. This is due to the large volume of through traffic on SWH. This means that right turning vehicles from SWH cannot find a gap to enter Dickens Place resulting in delays for southbound through traffic while those exiting from Dickens Place also cannot find sufficient gaps in traffic on SWH in which to exit. This is forecast to lead to extensive queuing on the north and west approaches with the longest queues of up to 4.3km being forecast on the north approach and queues of up to 900m on the west approach.

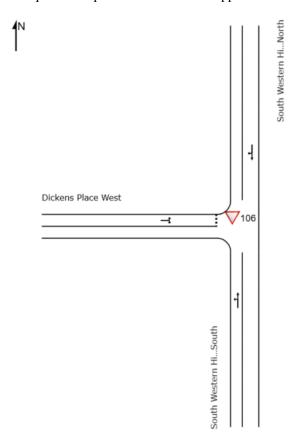
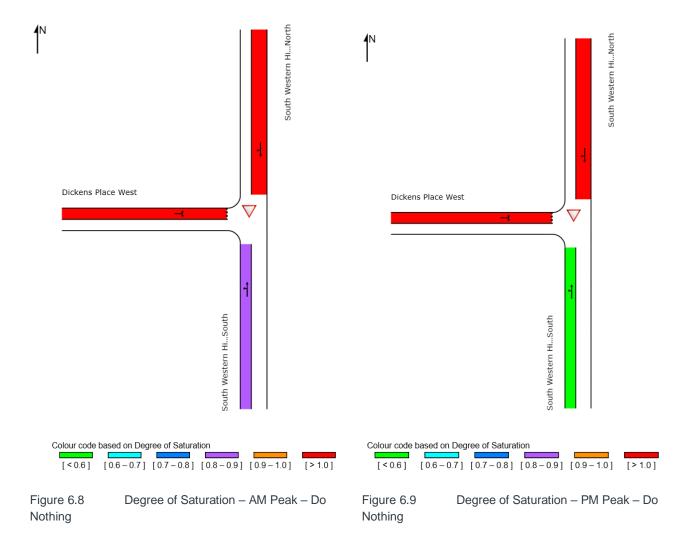



Figure 6.7 SWH/ Dickens PI – Existing intersection layout

6.3.2 2036 Do Something Scenario

A Do Something scenario was assessed for this intersection to improve capacity and reduce delay at this intersection in 2036.

It was noted that in the 2036 ROM24 plots that SWH has been allocated two lanes in each direction. Therefore, this was implemented in the Do Something model with turning pockets also provided for turning movements into Dickens Place. To compliment the dualling, a right turn pocket was added for the right turning movement from Dickens Place.

Initially, the intersection was modelled as a two staged priority controlled intersection in SIDRA to replicate median storage as in the opening year (2026) Do Something scenario. However, as a priority controlled intersection, the intersection is forecast to continue to operate within capacity, however significant delay is forecast on the west approach in the two staged configuration due to insufficient gaps for vehicles from Dickens Place to turn into SWH.

Therefore, two alternative options were developed. A signalised option was tested where SWH was converted into a dual carriageway with 60m turning pockets for both approaches of SWH into Dickens Place. The existing layout of a single carriageway for Dickens Place was retained in the model as shown in Figure 6.10.

The second option involved converting the existing layout into a two-lane circulating roundabout, with SWH being a dual carriageway and Dickens Place being a single lane carriageway as shown in Figure 6.11.

Figure 6.12 and Figure 6.13 show the degree of saturation at the proposed Signalised layout and Figure 6.14 and Figure 6.15 show the degree of saturation at the proposed roundabout layout of the SWH/ Dickens Place intersection in the AM and PM peak periods respectively in the 2036 Do Something scenario.

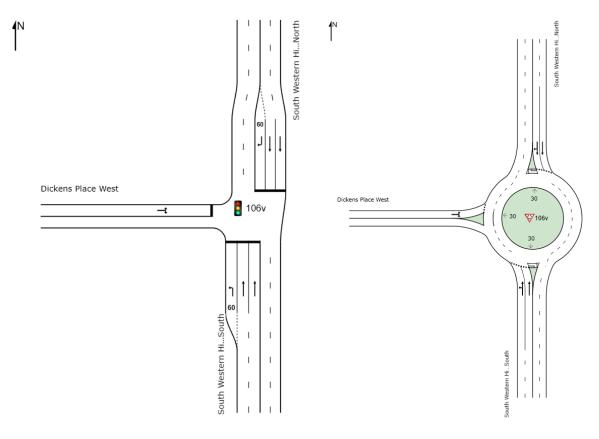


Figure 6.10 SWH/ Dickens PI – Signalised intersection option

Figure 6.11 SWH/ Dickens PI – Roundabout option

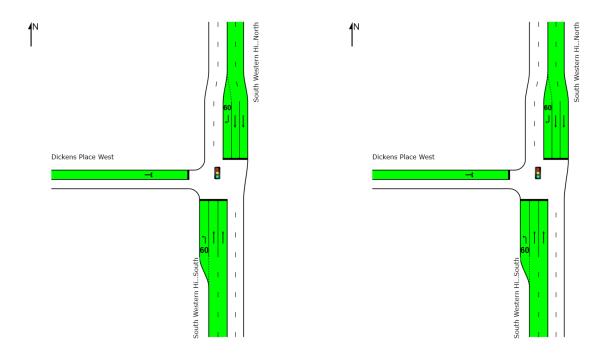


Figure 6.12 Degree of Saturation – AM Peak – Do Something - Signalised intersection

Figure 6.13 Degree of Saturation – PM Peak – Do Something - Signalised intersection

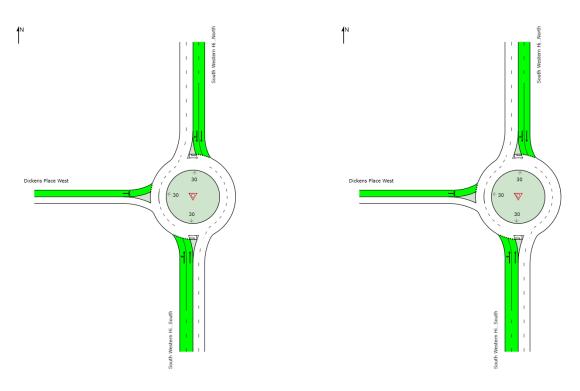


Figure 6.14 Degree of Saturation – AM Peak – Do Something - Roundabout

Figure 6.15 Degree of Saturation – PM Peak – Do Something - Roundabout

Table 6.2 SWH/ Dickens PI – Intersection performance

Intersection layout	AM Peak			PM Peak		
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)
Priority controlled (single stage)	F	3.585	84.6	F	6.491	78.6
Priority controlled (Two stage)	F	0.705	4.7	A	0.391	3.9
Signalised	A	0.596	8.0	A	0.573	9.2
Roundabout	A	0.516	5.6	A	0.473	5.6

Table 6.2 shows the intersection performance with the three different layouts for the year 2036.

As a result of signalisation, the intersection is forecast to operate satisfactorily at LoS A in both peak hours. The intersection is forecast to operate within capacity with a degree of saturation of 0.596 in the AM peak and 0.573 in the

PM peak. The highest forecast delay for this option is on Dickens Place with a delay of approximately 55s and 30s in the AM and PM peak periods respectively. The forecast queues are reasonable with the longest queue forecast to be around 160m for the through movement on the south approach in the AM peak.

In the roundabout option, the intersection is forecast to operate at LoS A in both peak periods with a degree of saturation of 0.516 and 0.473 in the AM and PM peak periods respectively. Forecast delays and queues are significantly lower than in both the priority controlled and signalised options with the highest delay being 15 seconds on the west approach in the AM peak and highest queue being around 40m on the north approach in the PM peak.

6.4 SWH/ Stone Street

6.4.1 2036 Do Nothing Scenario

Figure 6.16 represents the existing layout at the intersection of SWH/ Stone Street.

Figure 6.17 and Figure 6.18 show the degree of saturation at the existing layout of the SWH/ Stone Street intersection in the AM and PM peak periods respectively in the 2036 Do Nothing scenario.

In the Do Nothing scenario, the intersection is forecast to operate over capacity and at LoS F in both peak periods. This is due to the large volume of through traffic on SWH. This means that right turning vehicles from SWH cannot find a gap to enter Stone Street resulting in delays for southbound through traffic while those exiting from Stone Street also cannot find sufficient gaps in traffic on SWH in which to exit. This is forecast to lead to extensive queuing on the north and west approaches with the longest queues of up to 6km forecast on the north approach and queues of up to 2.4km being forecast on the west approach.

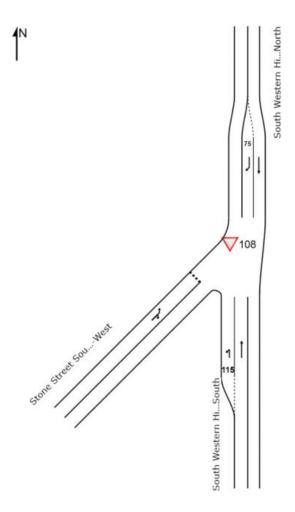
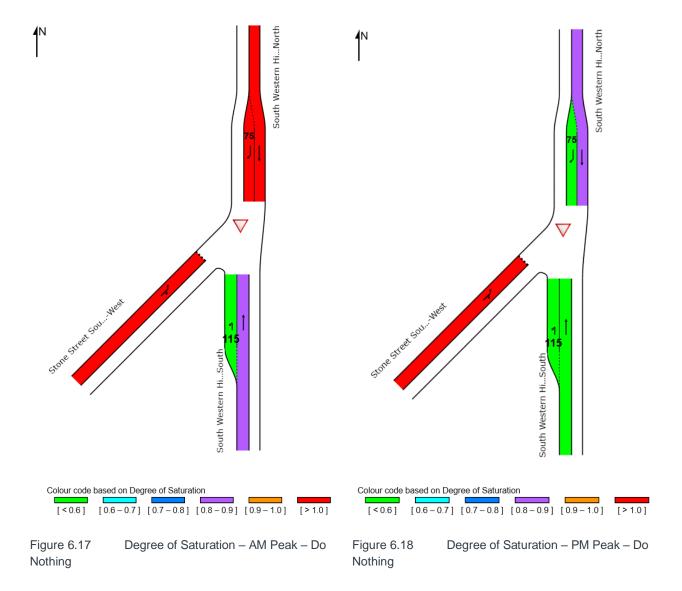



Figure 6.16 SWH/ Stone St – Existing intersection layout

6.4.2 Do Something Scenario

A Do Something scenario was assessed for this intersection to improve capacity and reduce delay at this intersection in 2036.

Initially, with the proposed duplication of SWH, SWH was changed to a dual carriageway with pockets added for turning movements into Stone Street. Additionally, the intersection was modelled as a two staged layout in SIDRA to replicate a median storage as in the opening year (2026) scenario. However, in this option the intersection was forecast to operate above capacity. A further intersection improvement was then tested with a turn pocket added for the left turning movement from Stone Street into SWH. However, the priority-controlled intersection was still forecast to operate significantly over capacity and with considerable delays in this scenario due to insufficient gaps for vehicles from Stone Street to turn into SWH and for vehicles to turn right from SWH north into Stone Street.

Two alternative options were therefore developed. For the first option, the priority-controlled intersection was converted into a signalised intersection (without the additional left turning pocket on Stone Street tested as a priority control) as shown in Figure 6.19.

The second option involved converting the existing layout into a two-lane circulating roundabout, with SWH being a dual carriageway and Stone Street being a single lane carriageway with a left turn pocket of 30m as shown in Figure 6.20.

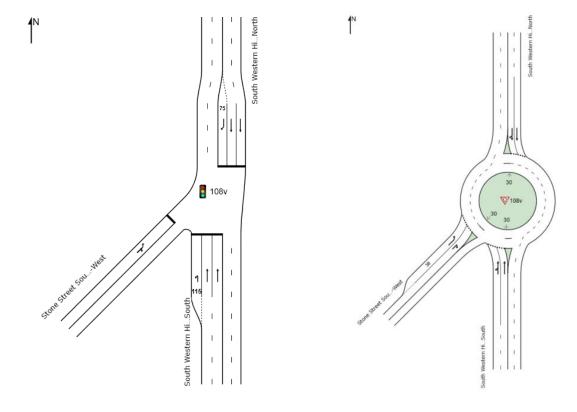


Figure 6.19 SWH/ Stone St – Signalised intersection option Figure 6.20 SWH/ Stone St – Roundabout option

Figure 6.21 and Figure 6.22 show the degree of saturation for the proposed signalised layout and Figure 6.23 and Figure 6.24 show the degree of saturation for the proposed roundabout layout of the SWH/ Stone Street intersection in the AM and PM peak periods respectively in the 2036 Do Something scenario.

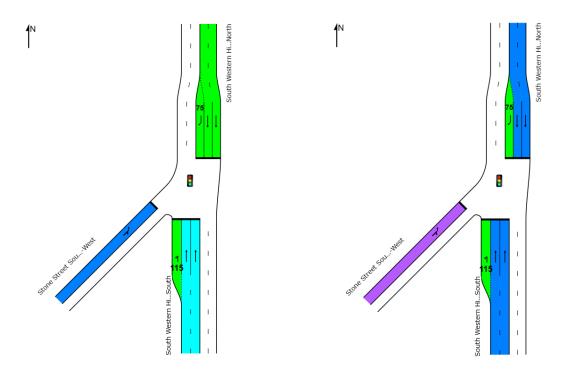


Figure 6.21 Degree of Saturation – AM Peak – Do Something - Signalised intersection

Figure 6.22 Degree of Saturation – PM Peak – Do Something - Signalised intersection

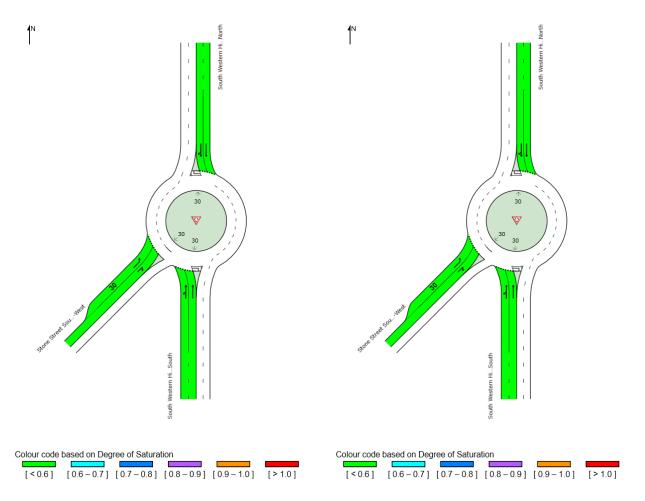


Figure 6.23 Degree of Saturation – AM Peak – Do Something - Signalised intersection

Figure 6.24 Degree of Saturation – PM Peak – Do Something - Signalised intersection

Table 6.3 SWH/ Stone St – Intersection performance

Intersection layout	AM Peak			PM Peak		
layout	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)
Priority controlled (single stage)	F	11.053	275.1	F	40.351	3006.0
Priority controlled (two stage)	F	0.910	8.2	F	2.608	260.3
Signalised	В	0.712	11.2	В	0.813	17.9
Roundabout	A	0.485	5.5	A	0.589	6.6

Table 6.3 shows the forecast intersection performance with different layouts in the year 2036. In the signalised scenario, the intersection is forecast to operate satisfactorily at LoS B in both peaks and within capacity with a degree of saturation of 0.712 and 0.813 in the AM and PM peak periods respectively. The highest delay forecast is for the right turn from Stone Street to SWH with a delay of around 45s in the AM peak and 35s in the PM peak. Queue lengths are forecast to be reasonable with the longest queue being around 160m on the south approach in the AM peak.

In the roundabout option, the intersection operates at LoS A in both peak periods with a degree of saturation of 0.485 and 0.589 in the AM and PM peak periods respectively. The forecast delays and queues are significantly lower than in the priority controlled and signalised scenarios with the highest delay forecast to be 14 seconds on the north approach in the PM peak and longest queue around 45 metres on the north approach in the PM peak.

6.5 SWH/ Eleventh Road

6.5.1 2036 Do Nothing Scenario

Figure 6.25 shows the existing layout at the intersection of SWH/ Eleventh Road.

Figure 6.26 and Figure 6.27 show the degree of saturation at the existing layout of the SWH/ Eleventh Road intersection in the AM and PM peak periods respectively in the 2036 Do Nothing scenario.

This layout is forecast to result in the intersection being oversaturated and operating at LoS F in both the peak periods in the year 2036. Again, this is due to the large volume of through traffic using SWH with the longest queue of around 1.6km forecast on the west approach in the PM peak.

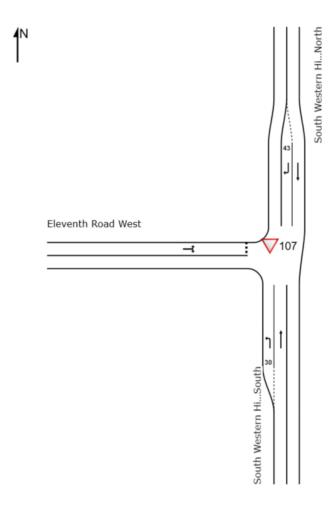
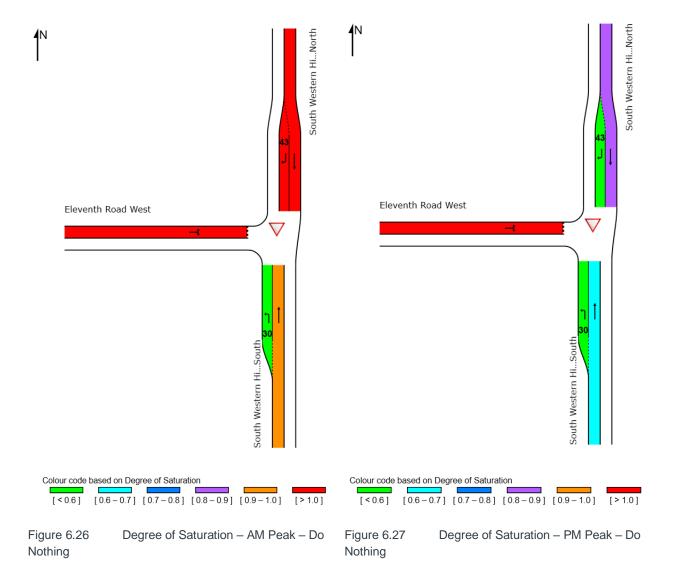



Figure 6.25 SWH/ Eleventh Road – Existing intersection layout

6.5.1.1 2036 Do Something Scenario

A Do Something scenario was assessed for this intersection to improve capacity and reduce delay at this intersection in 2036.

Initially, SWH was changed to a dual carriageway with pockets for turning movements into Eleventh Road. Additionally, the intersection was modelled as a two staged layout in SIDRA to replicate a median storage as in the opening year (2026) scenario. However, this results in the intersection operating over capacity. Therefore, a turn pocket was added for the left turning movement from Eleventh Road into SWH. However, the priority controlled intersection is still forecast to operate over capacity due to insufficient gaps for vehicles from Eleventh Road to turn into SWH and for vehicles to turn right from SWH north into Eleventh Road.

As an alternative, two options have been developed. In the first option, the priority controlled intersection was converted into a signalised intersection as shown in Figure 6.28.

The second option involved converting the existing layout into a two-lane circulating roundabout, with SWH being a dual carriageway and Eleventh Road being a single carriageway as shown in Figure 6.29.

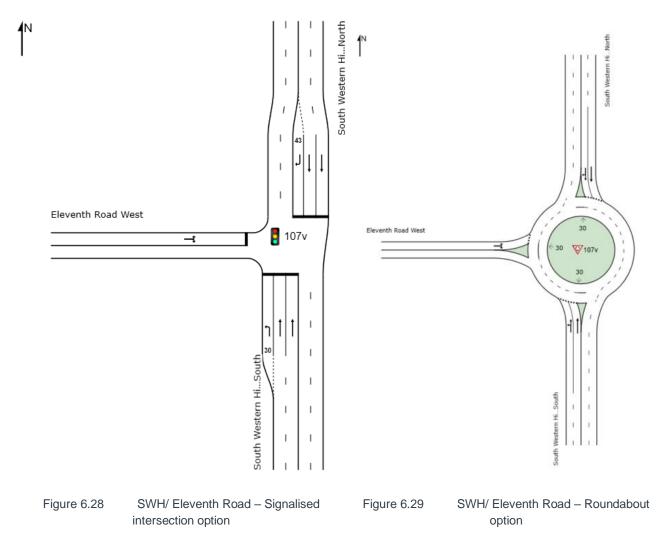


Figure 6.30 and Figure 6.31 show the degree of saturation for the proposed signalised layout and Figure 6.32 and Figure 6.33 show the degree of saturation for the proposed roundabout layout of the SWH/ Stone Street intersection in the AM and PM peak periods respectively in the 2036 Do Something scenario.

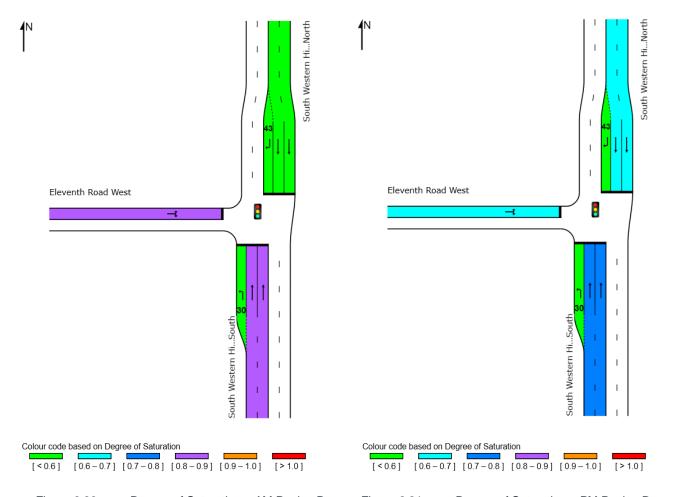


Figure 6.30 Degree of Saturation – AM Peak – Do Something - Signalised intersection

Figure 6.31 Degree of Saturation – PM Peak – Do Something - Signalised intersection

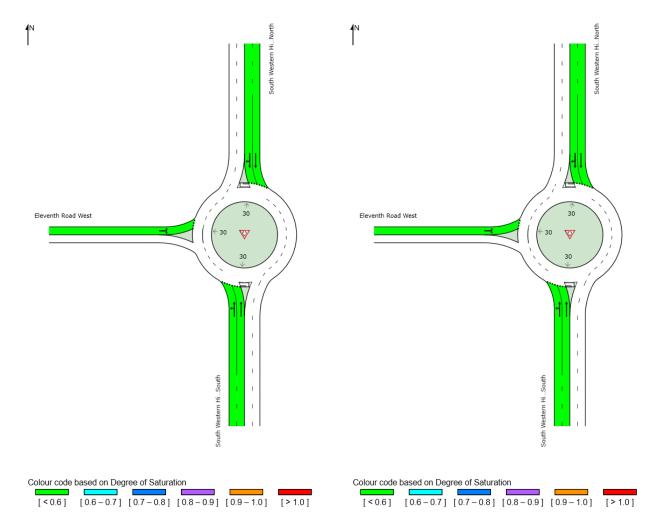


Figure 6.32 Degree of Saturation – AM Peak – Do Something - Signalised intersection

Figure 6.33 Degree of Saturation – PM Peak – Do Something - Signalised intersection

Table 6.4 SWH/ Eleventh Road – Intersection performance

Intersection layout		AM Peak	PM Peak			
ayout	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)
Priority controlled (single stage)	F	28.246	1425.3	F	34.035	1890.9
Priority controlled (two stage)	F	1.140	20.1	F	2.211	142.4
Signalised	В	0.861	19.6	В	0.715	14.9
Roundabout	A	0.576	7.5	A	0.613	7.9

Table 6.4 shows the intersection performance of the three options with the 2036 traffic forecasts. In the signalised option, the intersection is forecast to operate satisfactorily at LoS B in both peaks and within capacity with a degree of saturation of 0.861 and 0.715 in the AM and PM peak periods respectively. The highest delay forecast was for the right turn movement from Eleventh Road into SWH with a delay of around one minute in the AM peak. The longest forecast queue lengths are around 300m on the southern approach in the AM peak.

In the roundabout option, the intersection is forecast to operate at LoS A in both peak periods with a degree of saturation of 0.576 and 0.613 in the AM and PM peak periods respectively. The forecast delays and queues are significantly lower than in the priority controlled and signalised options with the highest delay being around 20s on the west approach in the AM peak and highest queue being around 50m on the south approach in the AM peak.

6.6 Eleventh Road/ Wungong Road

6.6.1 Do Nothing Scenario

Figure 6.34 and Figure 6.35 show the degree of saturation at the Eleventh Road/ Wungong Road intersection in the AM and PM peak periods respectively in the 2036 Do Nothing scenario. The intersection is forecast to perform satisfactorily operating at LoS A in both peak periods with a degree of saturation of 0.258 and 0.392 in the AM and PM peak periods respectively. There is negligible delay across the intersection with the highest forecast delay being ten seconds on the east approach in the PM peak. There is also negligible queuing forecast at the intersection with the longest forecast queue being ten metres on the north approach in the PM peak period.

Due to the modelled intersection performance and the available capacity, no additional infrastructure upgrade is forecast to be needed for the year 2036.

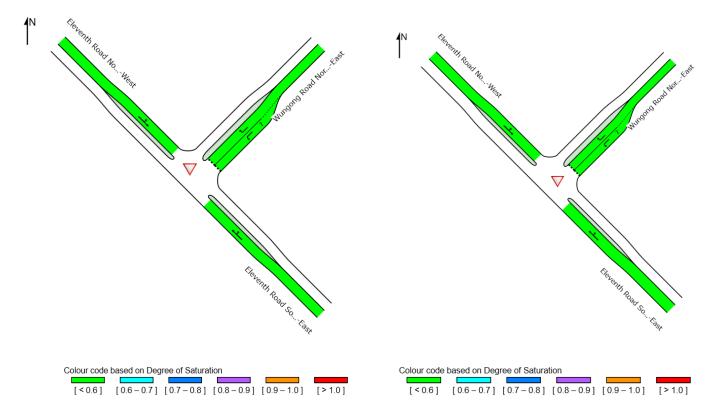


Figure 6.34 Degree of Saturation – AM Peak – Do Nothing

Figure 6.35 Degree of Saturation – PM Peak – Do Nothing

7 Network Modelling Results – Opening year + 10 (2036)

7.1 Introduction

The following section details the performance of the road networks in the Do Nothing (at grade) and Do Something (grade separated) scenarios that were required to be modelled as per the TMIF, under 2036 traffic forecasts.

7.2 Armadale Road Network

7.2.1 2036 Do Nothing Scenario (LX included and at grade)

The Do Nothing scenario assumes that the Armadale Road network will maintain the level crossing at grade in 2036. With the existing intersection layouts retained, the 2036 volume forecasts are applied to understand the performance of the road network.

The Armadale Road network in this scenario comprises the following intersections as shown schematically (as an output from SIDRA) in Figure 7.1:

- 1. Armadale Road/ Abbey Road/ Railway Avenue
- 2. Armadale level crossing
- 3. Armadale Road/ Streich Avenue
- Armadale Road/ Orchard Avenue
- 5. Armadale Road/ Church Avenue.

Figure 7.2 and Figure 7.3 show the degree of saturation at the Armadale Road network with the level crossing at grade in the AM and PM peak periods respectively in the 2036 Do Nothing (LX at grade) scenario.

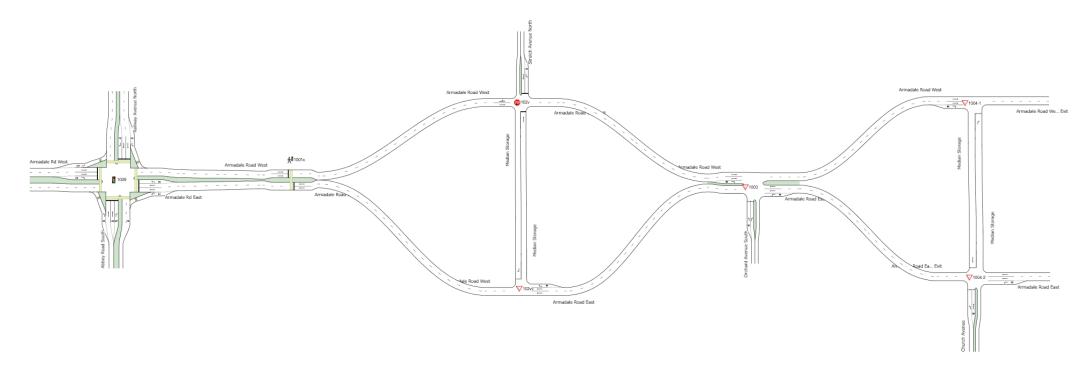
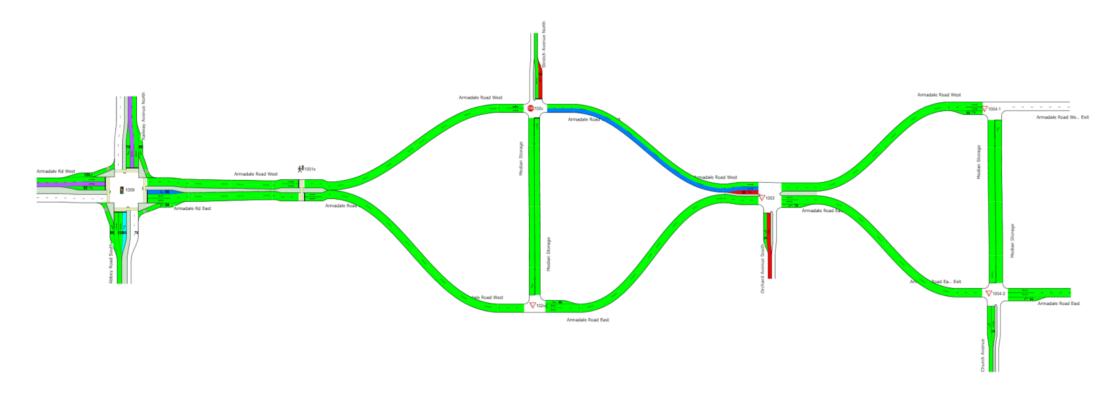



Figure 7.1 Armadale Road Network – Do Nothing Scenario (LX at grade)

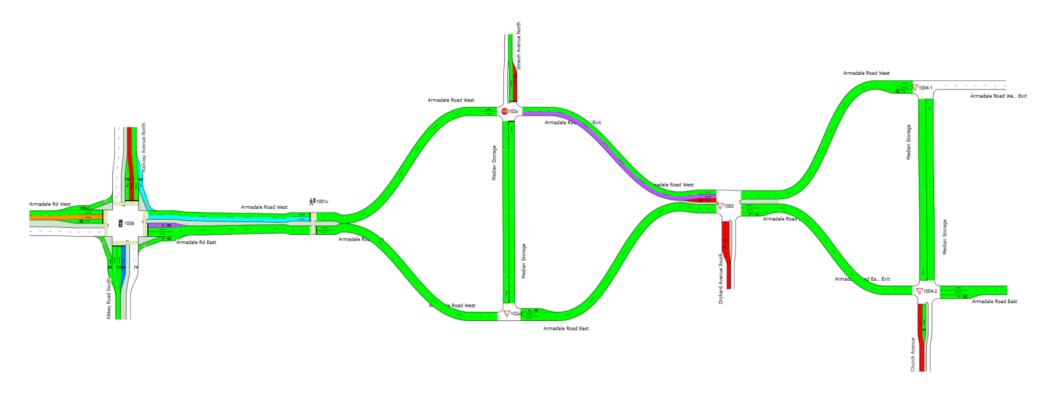



Figure 7.2 Degree of Saturation - Armadale Road Network – AM Peak - Do Nothing Scenario (LX at grade)

Colour code based on Degree of Saturation
[< 0.6] [0.6-0.7] [0.7-0.8] [0.8-0.9] [0.9-1.0] [>1.0]

Figure 7.3 Degree of Saturation - Armadale Road Network – PM Peak - Do Nothing Scenario (LX at grade)

Table 7.1 summarises the intersection performance of all the intersections in the Armadale Road network in the Do Nothing scenario with the level crossing at grade.

Table 7.1 Armadale Road Network performance – Do Nothing Scenario (LX at grade)

Intersection		AM Peak			PM Peak	
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)
Overall Network	F	2.149	-	F	3.083	-
Armadale Rd/ Abbey Rd/ Railway Ave	С	0.878	34.6	D	1.064	45.7
Armadale level crossing	В	0.598	10.1	В	0.622	10.6
Armadale Rd/ Streich Ave	F	2.149	167.6	F	3.083	390.4
Armadale Rd/ Orchard Ave	F	1.801	145.4	F	2.941	215.0
Armadale Rd/ Church Ave	A	0.407	3.6	F	1.226	52.1

In both the AM and PM peak periods, the network is forecast to operate at LoS F and over capacity with the predominant problem being insufficient gaps in traffic for the vehicles turning into Armadale Road from minor roads such as Streich Avenue and Orchard Avenue, and also for vehicles turning right from Armadale Road into Orchard Avenue.

7.2.2 2036 Do Nothing Scenario (grade separated)

Following confirmation from PTA regarding their intent to grade separate the level crossing on Armadale Road, this scenario analyses the Armadale Road network with grade separation in the future year whilst still retaining the existing layouts for the other intersections.

The Armadale Road network in this scenario comprises of the following intersections as shown schematically (as an output from SIDRA) in Figure 7.4:

- 1. Armadale Road/ Abbey Road/ Railway Avenue
- 2. Armadale Road/ Streich Avenue
- 3. Armadale Road/ Orchard Avenue
- 4. Armadale Road/ Church Avenue.

Figure 7.5 and Figure 7.6 show the degree of saturation at the Armadale Road network with grade separation in the AM and PM peak periods respectively in the 2036 Do Nothing (grade separated) scenario.

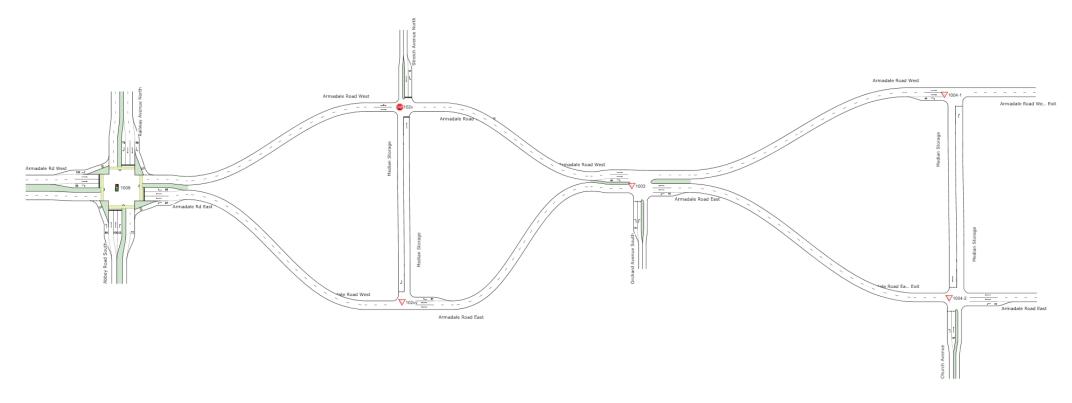


Figure 7.4 Armadale Road Network – Do Nothing Scenario (grade separated)

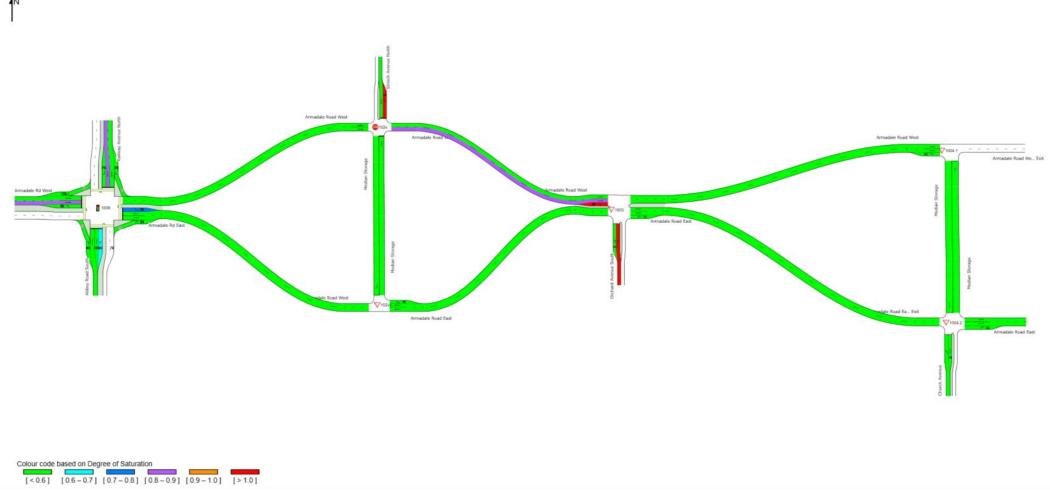


Figure 7.5 Degree of Saturation - Armadale Road Network – AM Peak - Do Nothing Scenario (grade separated)

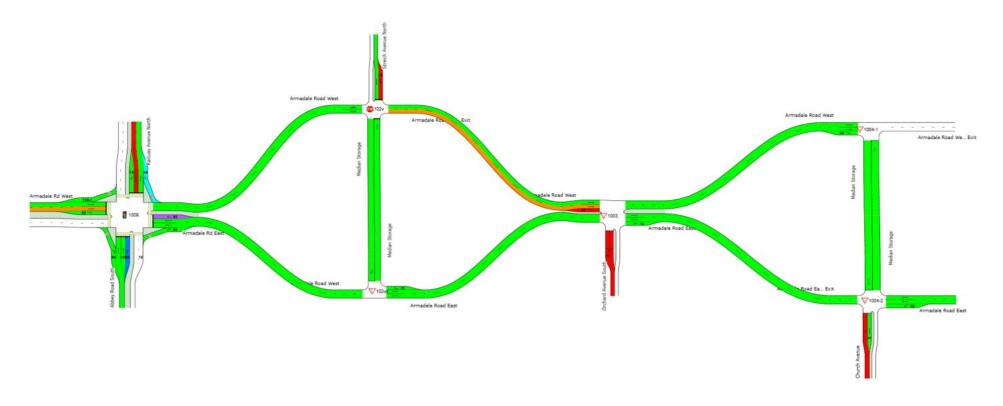


Figure 7.6 Degree of Saturation - Armadale Road Network – PM Peak - Do Nothing Scenario (grade separated)

Table 7.2 details the network and individual intersection performance of all the intersections in the Armadale Road network in the Do Nothing scenario with grade separation.

Table 7.2 Armadale Road Network performance – Do Nothing Scenario (grade separated)

Intersection		AM Peak			PM Peak	
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)
Overall Network	F	1.876	-	F	3.311	-
Armadale Rd/ Abbey Rd/ Railway Ave	С	0.878	34.4	D	1.064	45.7
Armadale Rd/ Streich Ave	F	1.523	81.3	F	2.160	221.3
Armadale Rd/ Orchard Ave	F	1.876	162.1	F	3.311	229.8
Armadale Rd/ Church Ave	A	0.422	3.6	F	1.226	51.9

As in the at grade scenario, the network operates at LoS F and over capacity in both the AM and PM peak periods. Again, the predominant problem is insufficient gaps in traffic for the vehicles turning into Armadale Road from minor roads such as Streich Avenue and Orchard Avenue, and also for vehicles turning right from Armadale Road into Orchard Avenue.

7.2.3 Do Something Scenario (grade separated)

To achieve satisfactory network performance, three scenarios with various layouts have been modelled and detailed as below:

- 1. Option 1: Fully signalised
- 2. Option 2: Roundabouts only
- 3. Option 3: Partial treatment with roundabouts and signals.

7.2.3.1 Option 1: Fully signalised

In this option, it is assumed that all intersections in the Armadale Road network which are currently priority controlled will be converted to signalised intersections in the future as shown in Figure 7.7.

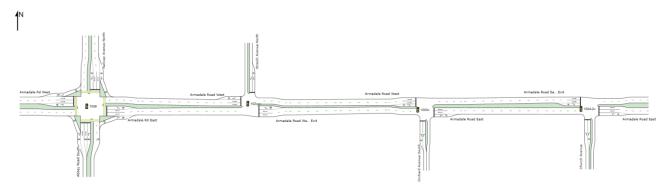


Figure 7.7 Armadale Road Network – Do Something Scenario (grade separated) – Fully signalised

At the intersection of Armadale Road/ Streich Avenue, the existing lane geometry is retained for the most part with the addition of a left turn pocket of 30m on the west approach of Armadale Road, and a reduction of the right turn pocket from 60m to 30m on the east approach of Armadale Road as shown in Figure 7.8.

At the intersection of Armadale Road/ Orchard Avenue, the existing lane geometry is retained for the most part with just the extension of the right turn pocket on the west approach of Armadale Road from 55m to 75m as shown in Figure 7.9.

The intersections of Armadale Road/ Church Avenue, as shown in Figure 7.10, and Armadale Road/ Abbey Road/ Railway Avenue will retain its existing signalised layout.

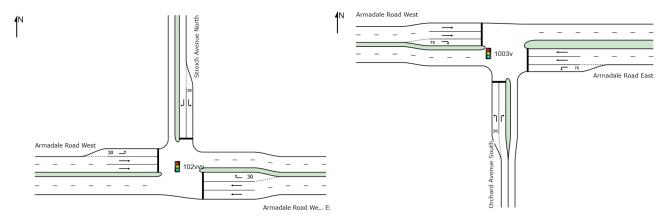


Figure 7.8 Armadale Road/ Streich Avenue – Signalised intersection option

Figure 7.9 Armadale Road/ Orchard Avenue – Signalised intersection option

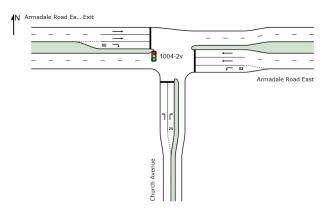


Figure 7.10 Armadale Road/ Church Avenue – Signalised intersection option

Figure 7.11 and Figure 7.12 show the degree of saturation at the Armadale Road network with grade separation and all intersections signalised in the AM and PM peak periods respectively in the 2036 Do Something (grade separated) scenario.

Figure 7.11 Degree of Saturation - Armadale Road Network – Do Something Scenario (grade separated) – Fully signalised – AM Peak

Figure 7.12 Degree of Saturation - Armadale Road Network - Do Something Scenario (grade separated) - Fully signalised - PM Peak

Table 7.3 details the performance of all the intersections in the Armadale Road Network in the Do Something scenario Option 1 with all intersections signalised.

Table 7.3 Armadale Road Network performance – Do Something Scenario (grade separated) – Fully signalised

Intersection	AM Peak			PM Peak			
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	
Overall Network	D	0.858	-	Е	1.070	-	
Armadale Rd/ Abbey Rd/ Railway Ave	С	0.858	34.8	Е	1.070	61.6	
Armadale Rd/ Streich Ave	A	0.635	9.0	В	0.759	14.9	
Armadale Rd/ Orchard Ave	В	0.760	15.7	В	0.786	15.7	
Armadale Rd/ Church Ave	В	0.639	14.2	В	0.698	19.2	

Whilst in the AM peak the network and all intersections operate satisfactorily and within capacity, the network is oversaturated in the PM peak as a result of the through movement on the west approach of Armadale Road/ Abbey Road/ Railway Avenue being over capacity.

It is noted that whilst all but one of the intersections operate within capacity, some approaches and movements at the intersection of Armadale Road/ Abbey Road/ Railway Avenue have extensive delays due to the cycle time used for the modelling. Further signal optimisation with LinSig would be required to address these issues and optimise the signals to the satisfaction of MRWA.

7.2.3.2 Option 2: Roundabouts only

In this option, it is assumed that all intersections in the Armadale Road network which are currently priority controlled will be converted to roundabouts in the future as shown schematically (as an output from SIDRA) in Figure 7.13.

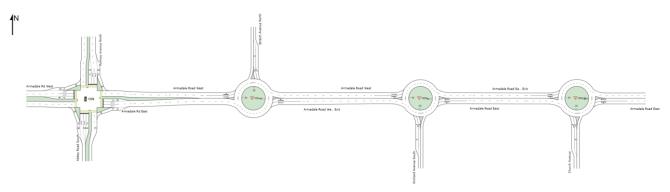


Figure 7.13 Armadale Road Network – Do Something Scenario (grade separated) – Roundabouts only

The intersection of Armadale Road/ Streich Avenue is converted to a two-lane circulating roundabout with no turning pockets on Armadale Road. The north approach of Streich Avenue will adopt a right turn pocket of 60m as shown in Figure 7.14.

The intersection of Armadale Road/ Orchard Avenue is converted to a two lane circulating roundabout with no turning pockets on Armadale Road. The south approach of Orchard Avenue retains the same lane geometry as the existing layout as shown in Figure 7.15.

The intersection of Armadale Road/ Church Avenue is converted to a two-lane circulating roundabout with no turning pockets on Armadale Road. The south approach of Church Avenue retains the same lane geometry as the existing layout as shown in Figure 7.16.

The intersection of Armadale Road/ Abbey Road/ Railway Avenue will retain its existing layout in this scenario.

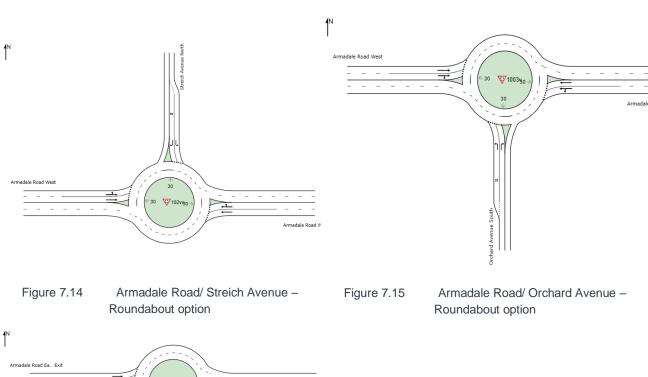


Figure 7.16 Armadale Road/ Church Avenue – Roundabout option

Figure 7.17 and Figure 7.18 show the degree of saturation at the Armadale Road network with grade separation and all intersections converted roundabouts in the AM and PM peak periods respectively in the 2036 Do Something (grade separated) scenario.

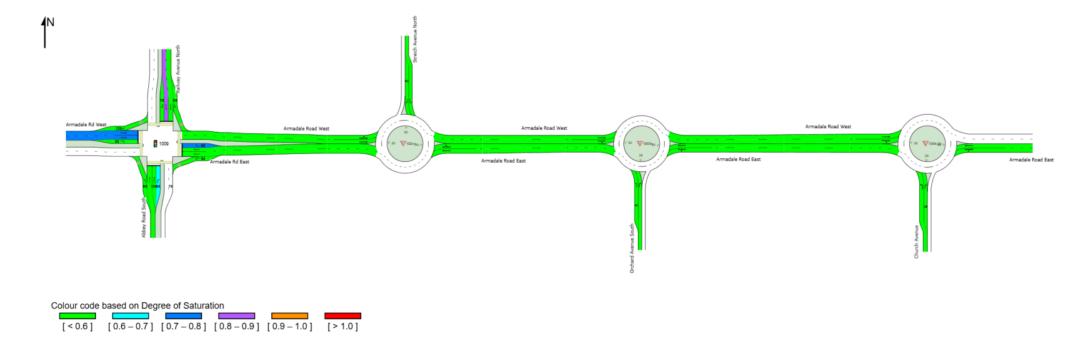


Figure 7.17 Degree of Saturation - Armadale Road Network – Do Something Scenario (grade separated) – Roundabouts only – AM Peak

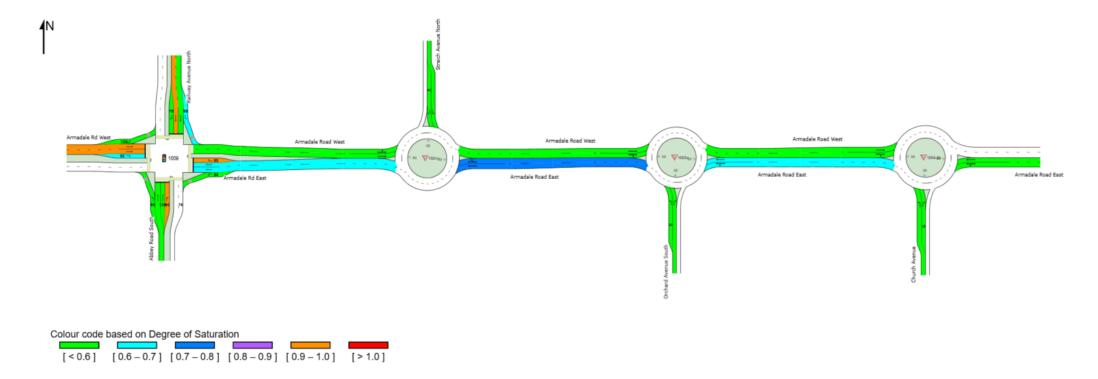


Figure 7.18 Degree of Saturation - Armadale Road Network - Do Something Scenario (grade separated) - Roundabouts only - PM Peak

Table 7.4 details the intersection performance of the Armadale Road Network in the Do Something Option 2 scenario where all intersections, with exception of the intersection of Armadale Rd/ Abbey Rd/ Railway Ave, are converted to roundabouts.

Table 7.4 Armadale Road Network performance – Do Something Scenario (grade separated) – Roundabouts only

Intersection		AM Peak			PM Peak	
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)
Overall Network	D	0.878	-	D	0.942	-
Armadale Rd/ Abbey Rd/ Railway Ave	С	0.878	32.5	D	0.942	51.1
Armadale Rd/ Streich Ave	A	0.529	5.8	A	0.782	6.4
Armadale Rd/ Orchard Ave	A	0.590	8.1	В	0.644	8.1
Armadale Rd/ Church Ave	A	0.485	6.9	A	0.450	7.0

With the grade separation and the conversion to roundabouts, the network performs satisfactorily in both the peak periods with all intersections operating with reasonable delay and queuing.

It is noted that whilst all the intersections operate within capacity, some approaches and movements at the intersection of Armadale Road/ Abbey Road/ Railway Avenue have extensive delays due to the cycle time used for the modelling. Further signal optimisation with LinSig would be required to address these issues and optimise the signals to the satisfaction of MRWA.

7.2.3.3 Option 3: Partial treatment with roundabouts and signals

In this option, it is assumed that two intersections in the Armadale Road network – Armadale Road/ Streich Avenue and Armadale Road/ Orchard Avenue – which are currently priority controlled will be converted to roundabouts and the intersection of Armadale Road/ Church Avenue will be converted to a signalised intersection in the future as shown in Figure 7.19. Different layouts and combinations of signalised intersections and roundabouts were tested and the layout adopted above was found to be the best performing network configuration.

Figure 7.20 and Figure 7.21 show the degree of saturation at the Armadale Road network with grade separation and partial treatment with roundabouts and signalisation in the AM and PM peak periods respectively in the 2036 Do Something (grade separated) scenario.

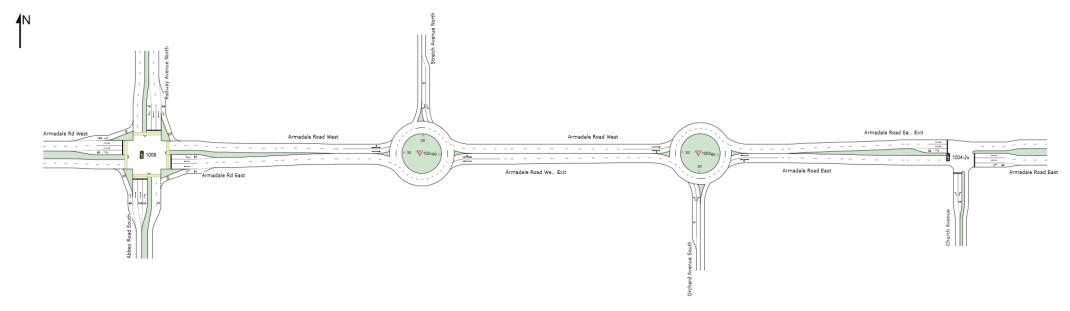


Figure 7.19 Armadale Road Network – Do Something Scenario (grade separated) – partial treatment



Figure 7.20 Degree of Saturation - Armadale Road Network - Do Something Scenario (grade separated) - Partial treatment - AM Peak

[<0.6] [0.6-0.7] [0.7-0.8] [0.8-0.9] [0.9-1.0] [>1.0]

Figure 7.21 Degree of Saturation - Armadale Road Network - Do Something Scenario (grade separated) - Partial treatment - PM Peak

All intersections within this network would adopt the same layouts as detailed in the previous sections.

Table 7.5 details intersection performance of the Armadale Road Network in the Do Something scenario.

Table 7.5 Armadale Road Network performance – Do Something Scenario (grade separated) – Partial treatment

Intersection	AM Peak			PM Peak			
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	
Overall Network	D	0.878	-	D	0.942	-	
Armadale Rd/ Abbey Rd/ Railway Ave	С	0.878	32.5	D	0.942	51.1	
Armadale Rd/ Streich Ave	A	0.529	5.8	A	0.782	6.4	
Armadale Rd/ Orchard Ave	A	0.590	7.9	A	0.644	7.8	
Armadale Rd/ Church Ave	В	0.760	14.4	В	0.666	13.7	

With the grade separation and the adopted intersection layouts, the network performs satisfactorily in both the peak periods with all intersections operating within capacity.

It is noted that whilst all the intersections operate within capacity, some approaches and movements at the intersection of Armadale Road/ Abbey Road/ Railway Avenue have extensive delays due to the cycle time used for the modelling. Further signal optimisation with LinSig would be required to address these issues and optimise the signals to the satisfaction of MRWA

7.3 Church Avenue Road Network

7.3.1 Do Nothing Scenario (LX included and at grade)

The scenario assumes that the Church Avenue network will have the level crossing at grade. With the existing intersection layouts retained, the 2036 volume forecasts are applied to understand the performance of the road network.

The Church Avenue network in this scenario comprises of the following intersections as shown schematically (as an output from SIDRA) in Figure 7.22:

- 1. Church Avenue/ William Street
- 2. Church Avenue/ Hobbs Drive/ Commerce Avenue
- 3. Church Avenue/ Green Avenue/ Wungong Road
- 4. Church Avenue level crossing.

Figure 7.23 and Figure 7.24 and show the degree of saturation at the Church Avenue network with the level crossing at grade in the AM and PM peak periods respectively in the 2036 Do Nothing (LX at grade) scenario.

Figure 7.22 Church Avenue Road Network – Do Nothing Scenario (LX at grade)

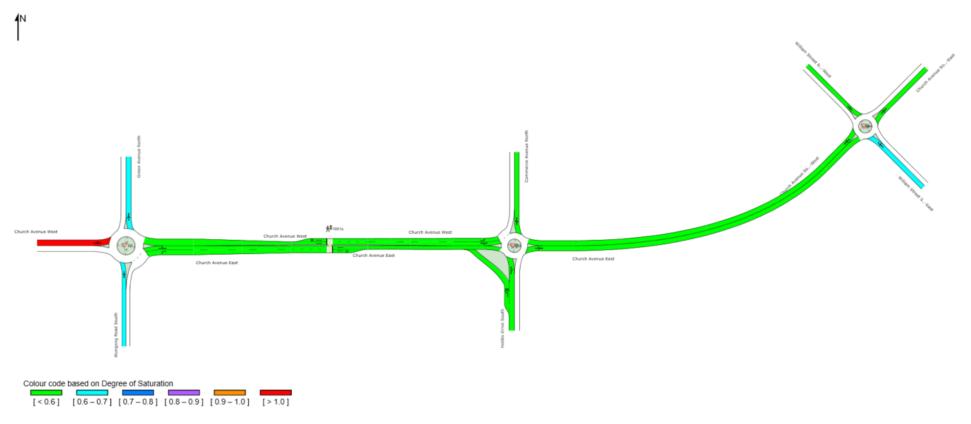


Figure 7.23 Degree of Saturation - Church Avenue Road Network - AM Peak - Do Nothing Scenario (LX at grade)

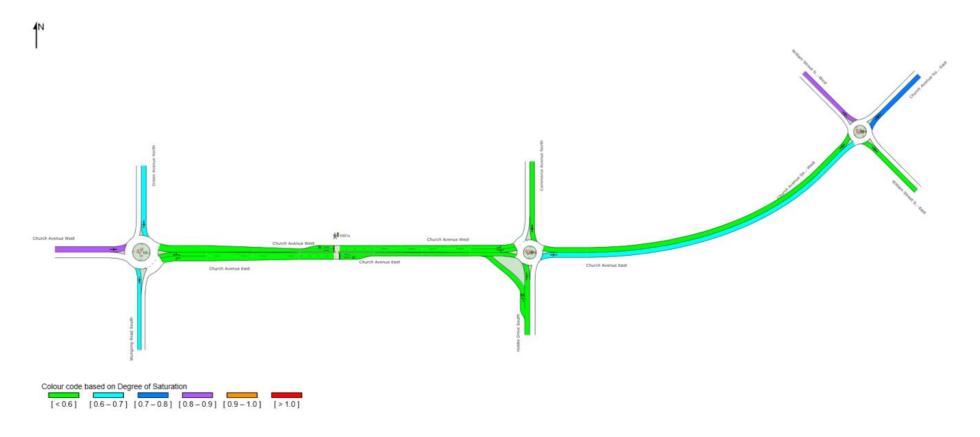


Figure 7.24 Degree of Saturation - Church Avenue Road Network - PM Peak - Do Nothing Scenario (LX at grade

Table 7.6 details the performance of all the intersections in the Church Avenue network.

Table 7.6 Church Avenue Network performance – Do Nothing Scenario (LX at grade)

Intersection	AM Peak			PM Peak			
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	
Overall Network	D	1.128	-	С	0.815	-	
Church Avenue/ William Street	A	0.620	7.2	В	0.812	13.8	
Church Avenue LX	A	0.330	3.2	A	0.295	3.0	
Church Avenue/ Hobbs Drive/ Commerce Avenue	A	0.491	5.2	A	0.637	6.3	
Church Avenue/ Green Avenue/ Wungong Road	Е	1.128	50.3	A	0.815	9.1	

Whilst in the PM peak, the network and the relevant intersections operate satisfactorily within capacity, the network is oversaturated in the AM peak as a result of the west approach at the intersection of Church Avenue/ Green Avenue/ Wungong Road being over capacity.

7.3.2 Do Nothing Scenario (grade separated)

This scenario analyses the Church Avenue network with grade separation in the future year whilst still retaining the existing layouts for the other intersections.

The Church Avenue network in this scenario comprises of the following intersections as shown in Figure 7.25:

- 1. Church Avenue/ William Street
- 2. Church Avenue/ Hobbs Drive/ Commerce Avenue
- 3. Church Avenue/ Green Avenue/ Wungong Road.

Figure 7.26 and Figure 7.27 show the degree of saturation at the Church Avenue network with grade separation in the AM and PM peak periods respectively in the 2036 Do Nothing (grade separated) scenario.

Figure 7.25 Church Avenue Network – Do Nothing Scenario (grade separated)

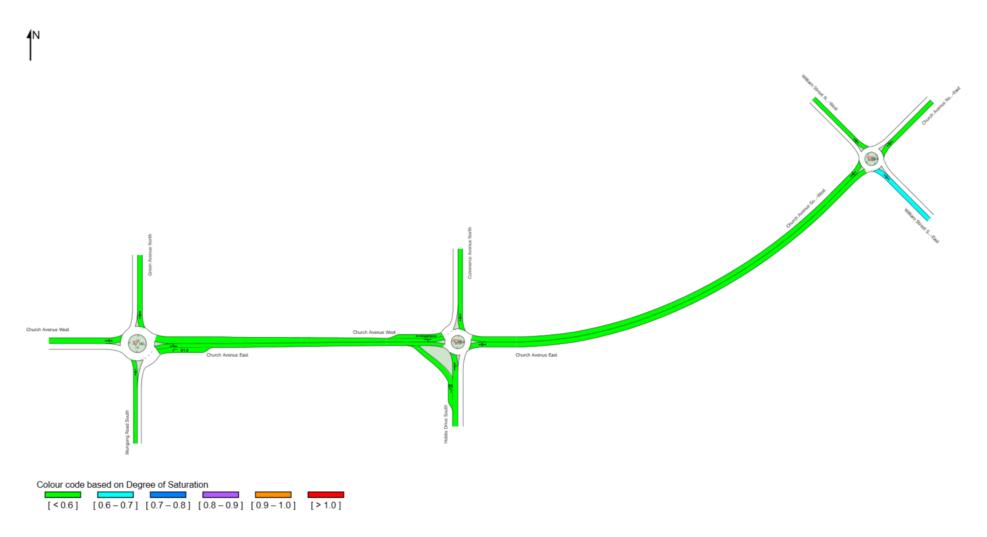


Figure 7.26 Degree of saturation - Church Avenue Network – AM Peak - Do Nothing Scenario (grade separated)

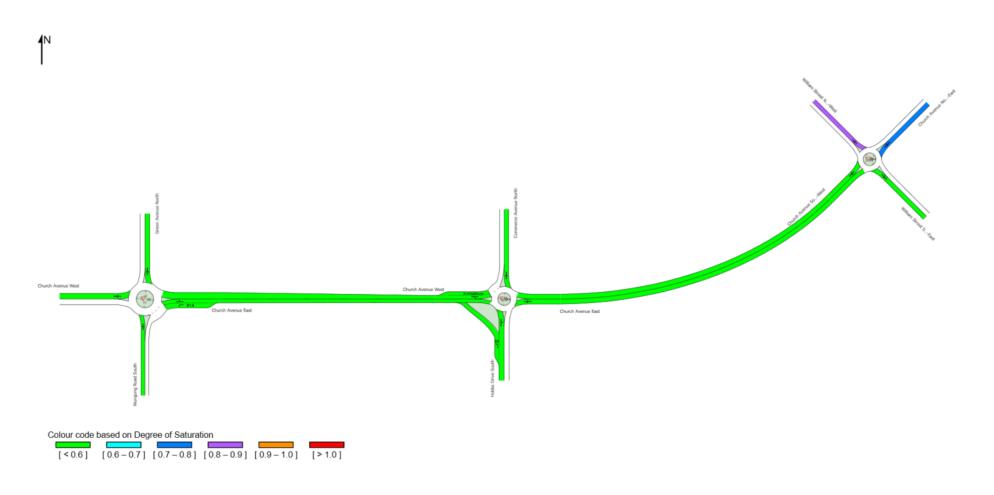


Figure 7.27 Degree of saturation - Church Avenue Network – PM Peak - Do Nothing Scenario (grade separated)

Table 7.7 details the performance of all the intersections in the Church Avenue network.

Table 7.7 Church Avenue Network performance – Do Nothing Scenario (grade separated)

Intersection	AM Peak			PM Peak			
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	
Overall Network	В	0.620	-	С	0.812	-	
Church Avenue/ William Street	A	0.620	7.2	В	0.812	13.8	
Church Avenue/ Hobbs Drive/ Commerce Avenue	A	0.341	5.8	A	0.340	6.1	
Church Avenue/ Green Avenue/ Wungong Road	A	0.594	7.6	A	0.462	7.0	

With the grade separation and with no changes to the existing layout, the intersections and network perform satisfactorily with all intersection operating with reasonable delay and queueing.

Due to the network performing satisfactorily with just the grade separation, no additional infrastructure is forecast to be added to the remaining intersections in the network.

7.4 Forrest Road Network

7.4.1 Do Nothing Scenario (LX included and at grade)

This scenario assumes that the Forrest Road network would still be at grade with the level crossing in place. With the existing intersection layouts retained, the 2036 volume forecasts are applied to understand the performance of the road network.

The Forrest Road network in this scenario comprises of the following intersections as shown schematically (as an output from SIDRA) in Figure 7.28:

- 1. Forrest Road/ Aragon Court
- 2. Forrest Road Level Crossing
- 3. Forrest Road/ Third Road/ Neerigen Street
- 4. Commerce Avenue/ Third Road/ Supermarket Access.

Figure 7.29 and Figure 7.30 show the degree of saturation at the Forrest Road network with the Level crossing at grade in the AM and PM peak periods respectively in the 2036 Do Nothing (LX at grade) scenario.

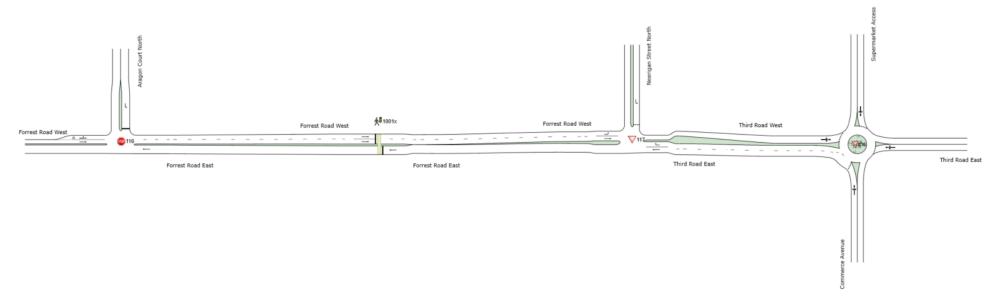


Figure 7.28 Forrest Road Network – Do Nothing Scenario (LX at grade)

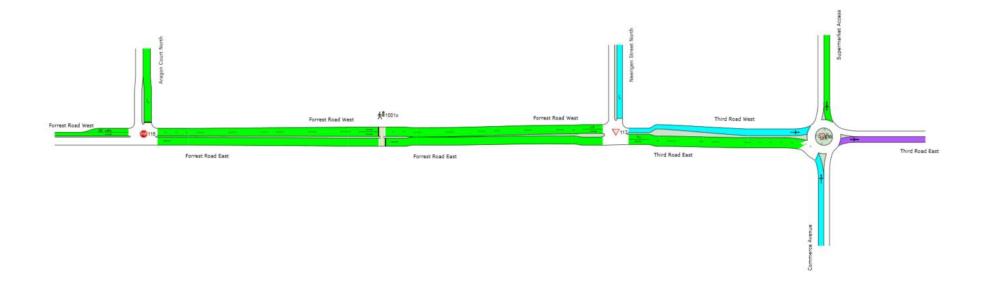


Figure 7.29 Degree of Saturation - Forrest Road Network – AM Peak - Do Nothing Scenario (LX at grade)

Colour code based on Degree of Saturation

[<0.6] [0.6-0.7] [0.7-0.8] [0.8-0.9] [0.9-1.0] [>1.0]

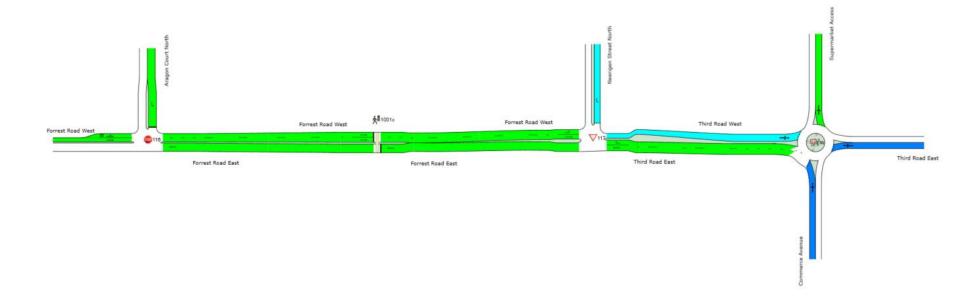


Figure 7.30 Degree of Saturation - Forrest Road Network - PM Peak - Do Nothing Scenario (LX at grade

Colour code based on Degree of Saturation

[<0.6] [0.6-0.7] [0.7-0.8] [0.8-0.9] [0.9-1.0] [>1.0]

Table 7.8 details the performance of all the intersections in the Forrest Road network.

Table 7.8 Forrest Road Network performance – Do Nothing Scenario (LX at grade)

Intersection	AM Peak			PM Peak			
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	
Overall Network	В	0.807	-	В	0.744	-	
Forrest Road/ Aragon Court	A	0.268	0.9	A	0.301	1.0	
Forrest Road LX	A	0.324	7.9	A	0.364	8.2	
Forrest Road/ Neerigan Street	A	0.614	2.8	A	0.656	2.8	
Third Road West/ Commerce Avenue	A	0.807	9.3	A	0.744	8.6	

With the existing network layout, the network and the relevant intersections perform satisfactorily with all intersections operating with reasonable delay and queueing.

However as confirmed by PTA, the Forrest Road network is to be grade separated in the future.

7.4.2 Do Nothing Scenario (grade separated)

This scenario analyses the Forrest Road network with grade separation in the future year, whilst still retaining the existing layouts for the other intersections.

The Forrest Road network in this scenario comprises of the following intersections as shown schematically (as an output from SIDRA) in Figure 7.31:

- 1. Forrest Road/ Aragon Court
- 2. Forrest Road Level Crossing
- 3. Forrest Road/ Third Road/ Neerigen Street
- 4. Commerce Avenue/ Third Road/ Supermarket Access.

Figure 7.32 and Figure 7.33 show the degree of saturation at the Forrest Road network with grade separation in the AM and PM peak periods respectively in the 2036 Do Nothing (grade separated) scenario.

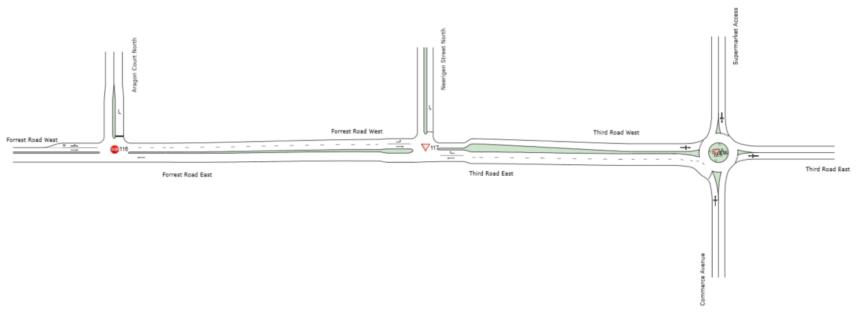
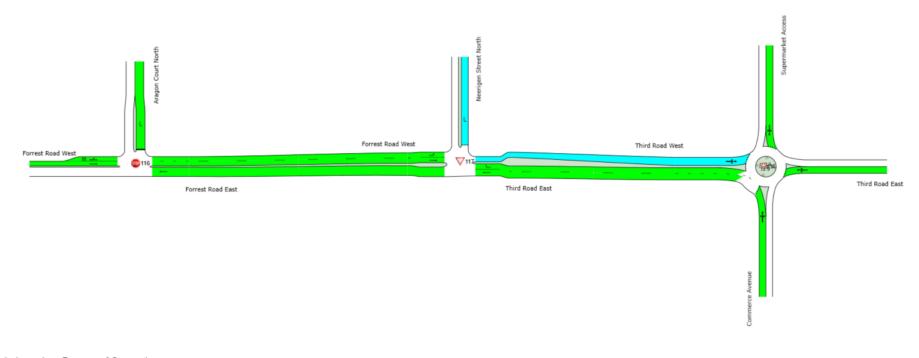



Figure 7.31 Forrest Road Network – Do Nothing Scenario (grade separated)

Colour code based on Degree of Saturation

[< 0.6] [0.6 - 0.7] [0.7 - 0.8] [0.8 - 0.9] [0.9 - 1.0] [> 1.0]

Figure 7.32 Degree of Saturation - Forrest Road Network – AM peak - Do Nothing Scenario (grade separated)

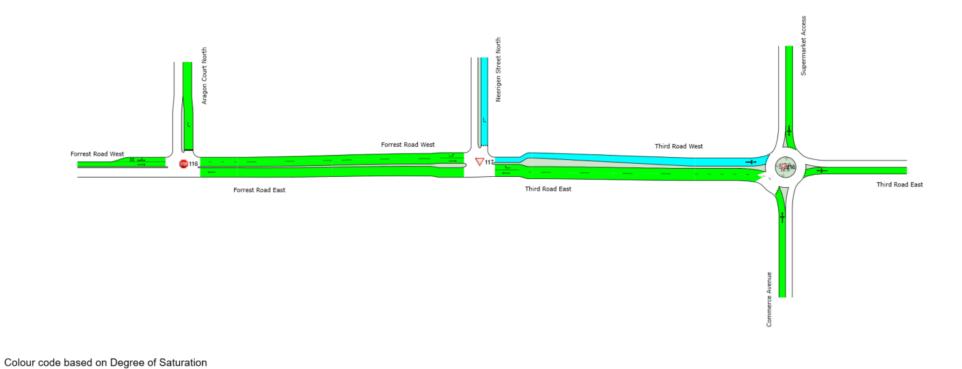


Figure 7.33 Degree of Saturation - Forrest Road Network – PM peak - Do Nothing Scenario (grade separated)

[<0.6] [0.6-0.7] [0.7-0.8] [0.8-0.9] [0.9-1.0] [>1.0]

Table 7.9 details the performance of all the intersections in the Forrest Road network.

Table 7.9 Forrest Road Network performance – Do Nothing Scenario (grade separated)

Intersection	AM Peak			PM Peak			
	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	Level of Service (LoS)	Degree of Saturation (DoS)	Average Delay (s)	
Overall Network	В	0.659	-	В	0.677	-	
Forrest Road/ Aragon Court	A	0.268	0.9	A	0.301	1.0	
Forrest Road/ Neerigan Street	A	0.628	2.9	A	0.673	2.9	
Third Road West/ Commerce Avenue/ Supermarket Access	A	0.659	6.9	A	0.677	6.6	

With the grade separation and with no changes to the existing layout, the intersections perform satisfactorily with all intersections operating with reasonable delay and queueing.

Due to the network performing satisfactorily with just the grade separation, no additional infrastructure is forecast to be added to the remaining intersections in the network.

8 Summary

WSP has been engaged by the Public Transport Authority (PTA) to assess the potential traffic impact to the road network surrounding Armadale Station and the closure of level crossings, under the future year demands associated with project and non-project traffic growth. The locations identified for assessment were defined and instructed by Main Roads WA (MRWA).

SIDRA base case models have been developed to provide the basis for option testing of the project.

The SIDRA modelling for the base case is documented in *PS125110-PAM-REP-002 RevF Public Transport Authority – Armadale Rail Extension, Sidra Base Model Calibration and Validation Report, WSP, 2021.* The base models have been endorsed by MRWA for use for the future year analysis.

The future year 2036 traffic volumes forecast using the Urban Road Planning (URP) method and agreed as suitable by MRWA before adoption for 'Do Nothing' and 'Do Something' modelling, to test the function of the road network under the forecast demands. For the future year 2026 traffic estimates, 2021 and 2031 ROM24 data were utilised to determine linear growth and estimate 2026 ROM24 data. This was then used in the URP spreadsheets to develop peak hour turning counts for the opening year

In locations where the existing layouts were unable to accommodate demands, a series of alternate at-grade intersection layout options were tested for capacity, which were somewhat independent of any design work. It was a stand-alone assessment, with the outputs intended to inform the next stages of project development.

In the context, it is suggested the key next steps are:

- Work with MRWA and the local government to determine which intersection upgrades are the responsibility of the project, noting that some intersections analysed are remote from the project, and that the traffic forecasts used for assessment include general region-wide traffic changes in addition to those instigated by the project.
- Review the ability to implement / construct the potential future year layouts in an engineering constraints context.

Irrespective, the following conclusions were drawn from the modelling undertaken:

- For intersections modelled as individual sites, all intersection which are priority controlled in the existing year, except for the intersection of Eleventh Road/ Wungong Road, need to be upgraded to a two staged priority controlled intersection in the opening year (2026). In the opening year + 10 (2036) scenarios, all intersection which are priority controlled in the existing year, except for the intersection of Eleventh Road/ Wungong Road either need to be signalised or converted to roundabouts to ensure that they operate satisfactorily.
- The intersection of SWH/ William St/ Bedfordale Hill Rd operates within capacity with changes to the lane discipline (shared through and right turn movement) on lane 1 of the west approach of William Street and with modifications to the phasing of the intersection. While the intersection still operates within capacity, the intersection needs to be further analysed and optimised with LinSig to MRWA satisfaction.
- For the Armadale Road network, it was noted that the current layout in the future year with grade separation operates over capacity. As a result, different layouts have been proposed as alternatives. Again, whilst the layouts operate within capacity, all intersections (both roundabouts and signals) need to be optimised further to MRWA satisfaction.
- For the road networks of Church Avenue and Forrest Road, grade separation ensures that the network operates
 within capacity with the existing layout. However, further upgrades might be needed to satisfy Main Roads WA
 requirements.

Figure 8.1 and Figure 8.2 summarises the proposed intersection configurations for all individual and network intersections in the Armadale study area.

Intersection	2026		2036	
	Do Nothing	Proposed	Do Nothing	Proposed
South Western Highway / William Street / Bedfordale Road	\checkmark	-	×	*
South Western Highway / Dickens Place	×	*	×	-
South Western Highway / Stone Street	×	*	×	-
South Western Highway / Eleventh Road	×	 *	X	+
Eleventh Road / Wungong Road	√	-	✓	-

Figure 8.1 Armadale – Individual Intersection summary

^{*} Same intersection control as existing, modified layout

	Intersection	2026		2036
		Do Nothing	Proposed	Proposed
	Armadale Road / Abbey Road / Railway Avenue	√	-	* * *
	Armadale Road / Streich Avenue	×	-	-
	Armadale Road / Orchard Road	×	- -	-
	Armadale Road / Church Avenue	\checkmark	-	-
ᆫ o 곳	Church Avenue / Wungong Road / Green Avenue -	\checkmark	-	-
rest Road Church Armadale letwork Avenue Network Network	Church Avenue / Commerce Avenue / Hobbs Drive	\checkmark	-	-
	Church Avenue / William Street	\checkmark	-	-
oad	Forrest Road / Aragon Court	\checkmark	-	-
est R	Forrest Road / Neerigan Street / Third Road	\checkmark	-	-
Z Š	Third Road / Commerce Avenue / supermarket access	\checkmark	-	-


^{*} Same intersection control, modified layout

Figure 8.2 Armadale – Network summary

^{* *} Further optimization in LinSig required to operate below capacity

Appendix A

MRWA Correspondence & Approvals

General

Title of The Project

METRONET - Byford Rail Extension (Armadale Station)

Stage

Traffic Impact Assessment

Applicant

METRONET

Modeller (if known)

Other

Requested by

Jiner

Please specify:

Eddie Mesina (METRONET)

Main Roads Reference Number

(Requester)

Main Roads Reference Number

(Approver)

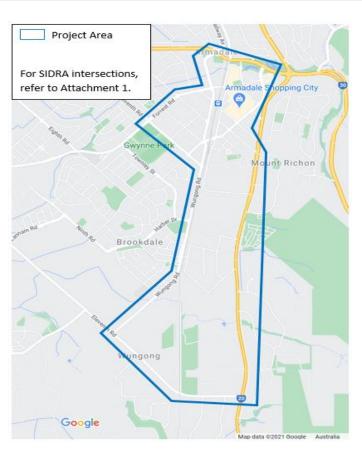
Modelling Objectives

- purpose of the modelling;
- who if it for;
- and, ...

- Feasibility Assessment
- Intersection Layout Justification Analysis

The purpose of the modelling is to investigate the traffic impacts of the Metronet upgrade works and suitable intersection treatments associated with Armadale Station on the wider road network performance.

Following a recent Australian Government funding announcement, Armadale Station is now confirmed to be elevated, and the existing level crossings (LX) at Armadale Road, Forrest Road and Church Avenue will also be grade separated. In addition, METRONET will close the existing Byron Road LX and grade separate the existing Eleventh Road LX.


It is assumed there is no traffic diversion as a result of the other proposed Byford Rail Extension level crossing removal schemes south of Eleventh Road.

Study Area

(i.e. Corridor or Intersection/s (TCS Number))

See image below (refer map in Attachment 1 for locations of individual intersections)

Study Area Image

Modelling Requirements

Software 1 SIDRA **Pedestrian Movement** $\hfill \Box$ Tick this box if pedestrain modelling is required **Additional Notes** Refer to map in Attachment 1 for intersection locations (corresponding to the numbers below) and their existing control type. Sites to be modelled in SIDRA as a **network**: 1) Armadale Rd / Abbey Rd / Railway Ave 2a) Armadale Rd LX (existing layout only)
2) Armadale Rd / Streich Ave 3) Armadale Rd / Orchard Ave 4) Armadale Rd / Church Ave Sites to be modelled in SIDRA as a network: 5) Forrest Rd / Aragon Ct 5a) Forrest Rd LX (existing layout only) 6) Forrest Rd / Third Rd / Neerigen St 7) Third Rd / Commerce Ave Sites to be modelled in SIDRA as a network: 8) Church Ave / Green Ave / Wungong Rd 8a) Church Ave LX (existing layout only) 9) Church Ave / Commerce Ave / Hobbs Dr 10) Church Ave / William St Sites to be modelled in SIDRA as <u>individual sites</u>: 11) SWH (South Western Hwy) / William St / Bedfordale Hill Rd 12) SWH / Dickens PI 13) SWH / Stone St 14) SWH / Eleventh Rd 15) Eleventh Rd / Wungong Rd Additional OD video survey locations **(no modelling required - for traffic redistribution purposes only)**: 16) Byron Rd LX / Wungong Road

Modelling Time Period

Please define all the time period options for the modelling

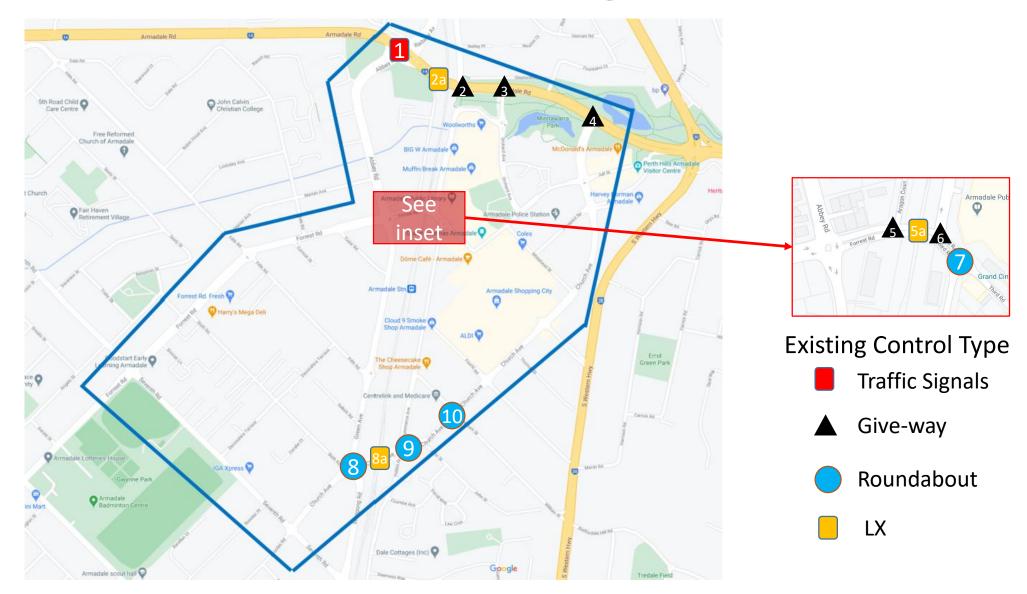
				Time	Period Option 1				
		Weekday			Weekend				
		From To					From	To	
AM	✓	TBC	TBC		Saturday Peak Hour/s	×			
PM	✓	TBC	TBC		Sunday Peak Hour/s	×			
_					_				
Other	×				Other	×			
Warm-u	ıp (minutes)				Cool-down (minutes)				
Please specify	the purpose	of peak time:							
Peak periods to Guidelines.	be determ	ined from the tra	affic survey da	ata. Consu	Itant to commission traffic surveys	as per th	e Operationa	ıl Modelling	I

		Modelling Scenarios	
Existing Base	V	Date of the Base Model New Survey TBC i.e. date of surveys used for model or date used to	o determine future traffic
Scenario 1	Opening Year	Existing Layout	
	Year	2023 Time Period Option* 1	
	Description		
Scenario 2	Opening Year	Proposed Layouts	
	Year	2023 Time Period Option* 1	
		Proposed layout options to be modelled: Armadale Rd LX grade separated (rail over road), Forrest Rd LX grade separated (rail over road), Church Ave LX grade separated (rail over road), Byron Rd LX closed	
Scenario 3	Opening Year	+ 10 Years, Proposed Layouts	
	Year	2033 Time Period Option* 1	
	Description	As per Scenario 2 (Opening Year, Proposed Layouts)	
		* 1 Time Period Option/s were defined in the previous page (Modelling Time Period)	

			Input D	Pata
		Please list all the available data for the	e modelling.	
·		Traffic Volume (New Survey)	Please specify	For all intersections, 24-hour video surveys are to be commissioned during one weekday (excluding public
	Traffic counts survey		holidays and school holidays). If 24-hour video surveys of all intersections is not feasible, liaise with MRWA to confirm surveying requirements.	
Input 2	Source of Data	SCATS History File Main Roads Western Australia	Please specify	For existing signalised intersections, historical phasing data (history file data & LX files) is to be requested for the same date as video surveys.
Input 3		Other	Please specify	ROM24 All-Day link volume plots to be provided for 2016, 2021, 2031, 2036 & 2041 by Road Planning &

	Source of Data	Main Roads Western Australia		Development (RPD) branch. The URP method is recommended for calibration of the ROM24 data. RPD branch to be consulted to review and approve the calibration process.
nput 4		Public Transport	Please specify	Data on train arrivals at each level crossing/boom gate closure times to be obtained. (For base model
	Source of Data	Public Transport Authority Train arrivals and boom gate closure times.		only)
nput 5		CAD	Please specify	CAD drawing should be used to code the network configuration.
	Source of Data	Proposed CAD design		
nput 6		Other	Please specify	Other signal-related information (i.e. traffic signal arrangement & phase sequence) to be sourced from
	Source of Data	Main Roads Western Australia		TrafficMap website (https://trafficmap.mainroads.wa.gov.au/map).
nput 7		Other	Please specify	Queue lengths at intersections along Armadale Road and SWH (consultant to state assumptions and
	Source of Data	Main Roads Western Australia		measurement methodology), to be used for model calibration and validation.
nput 8		Saturation Flows for Critial	Please specify	Saturation flows should be measured on-site or via video from the same day of the traffic survey (where
	Source of Data	Saturation Flow Survey		possible). These surveys should be undertaken in accordance with Appendix B of the Operational Modelling Guidelines.

Outputs


Output 1 Requested Format	Average Queue Length Spreadsheet	Please specify	Average and maximum queue lengths at key intersections to be reported for all scenarios.
Output 2 Requested Format	Tables and Graphs Spreadsheet	Please specify	Intersection performance outputs need to be generated for each future year scenario, including Average delay, Maximum queue length, Degree of saturation and Level of service for all intersections analysed in SIDRA.
Output 3 Requested Format	Other Please specify Report	Please specify	The modelling report should include modelling methodology, base year model calibration and validation results, parameters derived from Operational Modelling Guidelines, future traffic forecast assumptions, proposed network changes, network performance outputs and relevant recommendations (such as traffic management plans) if necessary
Output 4 Requested Format	Model Checklist Spreadsheet	Please specify	Model Audit Checklist for Base and Proposed models to be populated.

Approvals

Requested By e.g. Project Manager			Title	
Date			Signature	
Approved By			Title	
e.g. OMV Team, Network Perform	mance Manager or Traffic Mana	agement Services Manager	Signature	
Date			0.3	

Armadale Station Modelling (north of Church Avenue)

Armadale Station Modelling (south of Church Avenue)

Existing Control Type

- LX Closure (survey only)
- ▲ Give-way
- Roundabout
- Traffic Signals

From: FOURIE Paul (NPDM) <paul.fourie@mainroads.wa.gov.au>

Sent: Friday, 28 January 2022 4:38 PM

To: Jan, Mohammad < Mohammad.Jan@pta.wa.gov.au>; Fowler, Mark < Mark.Fowler@wsp.com>

Cc: BROADHURST Lindsay (DRPD) < lindsay.broadhurst@mainroads.wa.gov.au>; Selby, Tim < tim.selby@wsp.com>;

Ling, Bruce <Bruce.Ling@wsp.com>; Mesina, Eddie <Eddie.Mesina@pta.wa.gov.au>; Parolo,Alf

<a href="mailto:, PAROLO Alf (RRM) <a href="mailto: (RRM) <a hr

Subject: RE: Byford Rail Extension forecast traffic volumes

Hi Mohammad

I have looked at the volumes and am unable to find significant issues.

I suggest proceeding with the revised volumes in the attached.

Regards

Paul Fourie

Network Planning and Development Manager PTS / Road Planning and Development

p: +61 8 9323 4417

w: www.mainroads.wa.gov.au

From: Jan, Mohammad < Mohammad.Jan@pta.wa.gov.au >

Sent: Friday, 28 January 2022 11:40 AM

To: FOURIE Paul (NPDM) <paul.fourie@mainroads.wa.gov.au>; Fowler, Mark <mark.fowler@wsp.com>

Cc: BROADHURST Lindsay (DRPD) < lindsay.broadhurst@mainroads.wa.gov.au>; Selby, Tim < tim.selby@wsp.com>;

Ling, Bruce <Bruce.Ling@wsp.com>; Mesina, Eddie <Eddie.Mesina@pta.wa.gov.au>; Parolo,Alf

<a href="mailto:squar

Subject: RE: Byford Rail Extension forecast traffic volumes

CAUTION: This email originated from outside of Main Roads. Do not click links or open attachments unless you recognise the sender and know the content is safe.

Hi Paul,

Thanks for pushing the approval ,really appreciate your support for the BRE project.

I will be thankful if you can finalise the remaining last intersection (Church/William)so that we can proceed with modelling and final report.

It is becoming now critical for the BRE project team as we have entered in negotiation LOI phase.

Looking forward to hear from you soon.

Regards,

Mohammad Asif Jan BSc (Civil Eng), MIEAust, CPEng, NER Project Manager Byford Rail Extension Office of Major Transport Infrastructure Delivery(OMTID)

Tel: (08) 9326 5811 | Mob: 0402 33 44 34

34 - 50 Stirling Street Perth WA 6000

Department of Transport Main Roads Western Australia Public Transport Authority

From: FOURIE Paul (NPDM) < paul.fourie@mainroads.wa.gov.au >

Sent: Friday, 21 January 2022 4:44 PM **To:** Fowler, Mark < <u>mark.fowler@wsp.com</u>>

Cc: BROADHURST Lindsay (DRPD) < lindsay.broadhurst@mainroads.wa.gov.au>; Selby, Tim < tim.selby@wsp.com>;

Ling, Bruce <Bruce.Ling@wsp.com>; Jan, Mohammad <Mohammad.Jan@pta.wa.gov.au>; Mesina, Eddie

< Eddie. Mesina@pta.wa.gov.au >

Subject: RE: Byford Rail Extension forecast traffic volumes

Hi Mark

I have compared the volumes in the revised spreadsheets with the previous versions (DVD email 22 Dec 21) and am happy that the updates have been done.

However, I still need to discuss Church/William – will do that on Monday.

Regards

Paul Fourie

Network Planning and Development Manager PTS / Road Planning and Development **p:** +61 8 9323 4417

w: www.mainroads.wa.gov.au

We're working for Western Australia.

From: Fowler, Mark < Mark < Mark.Fowler@wsp.com>
Sent: Tuesday, 11 January 2022 11:46 AM

To: FOURIE Paul (On Leave) < paul.fourie@mainroads.wa.gov.au >

Cc: BROADHURST Lindsay (On Leave) < !lindsay.broadhurst@maintoads.wa.gov.au; Selby, Tim < !tim.selby@wsp.com; Ling, Bruce < Bruce < a h

< Mohammad.Jan@pta.wa.gov.au >; Eddie Mesina < Eddie.Mesina@pta.wa.gov.au >

Subject: RE: Byford Rail Extension forecast traffic volumes

CAUTION: This email originated from outside of Main Roads. Do not click links or open attachments unless you recognise the sender and know the content is safe.

Hi Paul

Happy new year!

As per David's request below, I am sending you the handful of outstanding sites for review. For ease of reference / tracking, I have added another column to the table from the email and copied it below.

Please give me a shout if you have any questions.

Cheers Mark

 		· · ·	David instruction from phone call	Status / Action from 29/12	Current status / action
No.	Location	required?			
			Approach volumes on abbey to be	To be updated using new ROM data.	Analysis supplemented with newly
		No change – same	updated from new data provided by	Will be issued by COB 11 th Jan.	provided ROM data, attached for review
1	Armadale / Abbey	peak	David yesterday		and approval by Paul.
			No more action	Peak data updated, attached for	Signed off by David on 4/1/22.
2	Armadale / Orchard	Updated AM Peak		review and approval by David.	
			Approach on Neerigan considered	3% growth method applied in previous	Updated using instructed 3% growth
			high, southbound correct, use 3%	issue of data. To be further updated	method to supplement missing ROM
		No change – same	linear for Neerigan as growth method	using new ROM data. Will be issued	data, attached for review and approval by
3	Forrest / Neerigan	peak	(16 years * 3% = times by 1.48)	COB 11 th Jan.	Paul.
			Make sure roundabout is coded	Previously coded, attached for review	Have double checked all inputs and
			correctly with u-turns. Nothing more.	and approval by David.	method. We can't work out what David
					considers "low" or what needs corrected.
		Updated AM and PM			Have attached for Paul to review and
4	Church / William	Peak			advise please.
	Church / Hobbs /		PM video coded incorrectly, excessive	Peak data updated and 3% growth	Updated using instructed 3% growth
5	Commerce	Updated PM Peak	demands on Hobbs and Commerce –	method applied in previous issue of	method to supplement missing ROM

			_	data. To be further updated using new ROM data. Will be issued COB 11 th Jan	data, attached for review and approval by Paul.
6	Abernethy / George		Note: in future where George meets	Peak data updated, to be further updated using 3% growth method. Will be issued COB 11 th Jan.	Updated using instructed 3% growth method to supplement missing ROM data, attached for review and approval by Paul.
7	SWH / Beenyup / Abernethy	No change – same peak		Updated previously and checked, attached for review and approval by David.	Signed off by David on 4/1/22.
8	Gordin / Sansimeon	No change – same peak	Use 3% method here as we don't have Gordin.	method. Will be issued by COB 11 th	Updated using instructed 3% growth method to supplement missing ROM data, attached for review and approval by Paul.

Mark Fowler

Regional Executive; Planning and Mobility, WA

T: +61 8 94894366

Mark.Fowler@wsp.com

WSP Australia Pty Limited Level 5, 503 Murray St Perth, WA, 6000 Australia

wsp.com/au

WSP acknowledges that every project we work on takes place on First Peoples lands. We recognise Aboriginal and Torres Strait Islander Peoples as the first scientists and engineers and pay our respects to Elders past and present.

From: VAN DEN DRIES David (URPM) < david.vandendries@mainroads.wa.gov.au

Sent: Tuesday, 4 January 2022 9:32 AM

To: Fowler, Mark < Mark. Fowler@wsp.com >; Mohammad Jan < Mohammad.Jan@pta.wa.gov.au >; Eddie Mesina < Eddie. Mesina@pta.wa.gov.au >

Cc: BROADHURST Lindsay (On Leave) < !indsay.broadhurst@mainroads.wa.gov.au">; FOURIE Paul (NPDM) < paul.fourie@mainroads.wa.gov.au; Selby, Tim

<tim.selby@wsp.com>; Ling, Bruce <Bruce.Ling@wsp.com>

Subject: RE: Byford Rail Extension forecast traffic volumes

Good morning Mark, Mohammad and Eddie,

Thank you Mark for your email and the three amended intersection assessment. I have reviewed the three excel files and confirm the following:

- Church Ave William St 2031 demands on the southbound approach on Church Avenue, your demands are low.
- Armadale Road Orchard Avenue OK
- SWH Abernethy Rd Beenyup Rd OK.

Mark, you have indicated to me in your email below that the remaining will be available for review on Tuesday next week. As I am on extended leave (6 months), can you please have the remaining assessment sent to Paul Fourie. Paul email address is paul-fourie@mainroads.wa.gov.au

Regards

David Van Den Dries

From: Fowler, Mark < Mark < Mark.Fowler@wsp.com Sent: Wednesday, 29 December 2021 9:37 AM

To: VAN DEN DRIES David (URPM) < david.vandendries@mainroads.wa.gov.au; Mohammad Jan < Mohammad.Jan@pta.wa.gov.au; Eddie Mesina Eddie.Wesina@pta.wa.gov.au; Eddie Mesina

Cc: BROADHURST Lindsay (DRPD) < !indsay.broadhurst@mainroads.wa.gov.au; FOURIE Paul (NPDM) < paul.fourie@mainroads.wa.gov.au; Selby, Tim

<<u>tim.selby@wsp.com</u>>; Ling, Bruce <<u>Bruce.Ling@wsp.com</u>>

Subject: RE: Byford Rail Extension forecast traffic volumes

CAUTION: This email originated from outside of Main Roads. Do not click links or open attachments unless you recognise the sender and know the content is safe.

Hi all

David and I caught up on the morning of the 23rd to run through each of the 8 outstanding sites, in the context of the three potential instructed directions. The status of each is confirmed below.

No.	Location	Site peak update required?	David instruction from phone call	Current status / Action
			Approach volumes on abbey to be updated from	To be updated using new ROM data. Will be issued
1	Armadale / Abbey	No change – same peak	new data provided by David yesterday	by COB 11 th Jan.
			No more action	Peak data updated, attached for review and
2	Armadale / Orchard	Updated AM Peak		approval by David.
			Approach on Neerigan considered high,	3% growth method applied in previous issue of
			southbound correct, use 3% linear for Neerigan as	data. To be further updated using new ROM data.
3	Forrest / Neerigan	No change – same peak	growth method (16 years * 3% = times by 1.48)	Will be issued COB 11 th Jan.
			Make sure roundabout is coded correctly with u-	Previously coded, attached for review and approval
4	Church / William	Updated AM and PM Peak	turns. Nothing more.	by David.

5	Church / Hobbs / Commerce	Updated PM Peak	PM video coded incorrectly, excessive demands on Hobbs and Commerce – use 3% growth on these links as do not exist in ROM.	Peak data updated and 3% growth method applied in previous issue of data. To be further updated using new ROM data. Will be issued COB 11 th Jan
6	Abernethy / George	Updated PM Peak	Apply 3% to the driveway to the pub. Note: in	Peak data updated, to be further updated using 3% growth method. Will be issued COB 11 th Jan.
7	SWH / Beenyup / Abernethy	No change – same peak	Check PM volumes.	Updated previously and checked, attached for review and approval by David.
8	Gordin / Sansimeon	No change – same peak		To be updated using 3% growth method. Will be issued by COB 11 th Jan.

As I identified in an earlier email, some intersections that require attention for the other resolutions will take longer to modify. <u>@VAN DEN DRIES David (URPM)</u> given the above documents exactly what you want us to change, and we have gotten the other 21 to your expectations, would you be comfortable in approving these without seeing the outputs? Otherwise, for this handful of intersections, would you be able to give someone in your team the target forecast data to sign it off in your absence – we will be able to issue by COB 11th Jan at the latest?

Thanks all Mark

Mark Fowler

Regional Executive; Planning and Mobility, WA

T: +61 8 94894366

Mark.Fowler@wsp.com

WSP Australia Pty Limited Level 5, 503 Murray St Perth, WA, 6000 Australia

wsp.com/au

WSP acknowledges that every project we work on takes place on First Peoples lands. We recognise Aboriginal and Torres Strait Islander Peoples as the first scientists and engineers and pay our respects to Elders past and present.

From: Fowler, Mark

Sent: Thursday, 23 December 2021 8:09 AM

To: VAN DEN DRIES David (URPM) < david.vandendries@mainroads.wa.gov.au; Mohammad Jan

< Mohammad. Jan@pta.wa.gov.au >; Eddie Mesina < Eddie. Mesina@pta.wa.gov.au >

Cc: BROADHURST Lindsay (DRPD) < lindsay.broadhurst@mainroads.wa.gov.au>; FOURIE Paul (NPDM)

<paul.fourie@mainroads.wa.gov.au>; Selby, Tim <<u>Tim.Selby@wsp.com</u>>; Ling, Bruce <<u>Bruce.Ling@wsp.com</u>>

Subject: RE: Byford Rail Extension forecast traffic volumes

Hi all

Sorry, just to clarify a couple of things

<u>@Mohammad Jan</u> <u>@Eddie Mesina</u> the question in red text below was for you both, and needs an urgent answer within the next hour before I speak to David.

There are 18 intersections approved, so on the 10th January we can start the future year modelling on these 18.

Thanks

Mark Fowler

Regional Executive; Planning and Mobility, WA

T: +61 8 94894366

Mark.Fowler@wsp.com

WSP Australia Pty Limited Level 5, 503 Murray St Perth, WA, 6000 Australia

wsp.com/au

WSP acknowledges that every project we work on takes place on First Peoples lands. We recognise Aboriginal and Torres Strait Islander Peoples as the first scientists and engineers and pay our respects to Elders past and present.

From: Fowler, Mark

Sent: Wednesday, 22 December 2021 7:11 PM

To: VAN DEN DRIES David (URPM) < <u>david.vandendries@mainroads.wa.gov.au</u>>; Mohammad Jan

< Mohammad.Jan@pta.wa.gov.au >; Eddie Mesina < Eddie.Mesina@pta.wa.gov.au >

Cc: BROADHURST Lindsay (DRPD) < !indsay.broadhurst@maintoads.wa.gov.au; FOURIE Paul (NPDM)

<paul.fourie@mainroads.wa.gov.au>; Selby, Tim <Tim.Selby@wsp.com>; Ling, Bruce <Bruce.Ling@wsp.com>

Subject: RE: Byford Rail Extension forecast traffic volumes

Importance: High

Thanks David and thanks for taking my call.

Of the 8 (of 26) intersections you have concerns with, the resolutions can be summarised as follows:

- You have instructed WSP to utilise the individual intersection peaks as opposed to adopting the network peak. This item is what you have identified as a coding error, but it is not an error, rather use of a different data set. It should be noted that we adopted the network peak approach (as opposed to your intersection peak approach) to ensure consistency with the mandated Network Operations SIDRA modelling methodology. Adoption of the intersection peak as the basis for future year traffic forecasting could result in flow imbalances between intersections, which isn't ideal in a network model (although not a massive issue). We can adopt either but Mohammad Jan PTA need to be aware of this potential imbalance with the intersection peak method and be accepting of it I urgently need your direction on this to adapt the data if required.
- Confirmation that of the two growth options we have presented to date for where ROM data is missing, we should adopt the **3% linear traffic growth** method.
- Data gaps from the currently provided ROM data is to be plugged using the additional data sent through today, as opposed to making an assumption using the previously provided data.

David and I have agreed to catch up for half an hour in the morning to basically populate the below table (I will try to make sure our modeller is available to join also)

No.	Location	Current concern	Method to address
1	Armadale / Abbey		
2	Armadale / Orchard		
3	Forrest / Neerigan		
4	Church / William		
5	Church / Hobbs / Commerce		
6	Abernethy / George		
7	SWH / Beenyup / Abernethy		
8	Gordin / Sansimeon		

I am concerned that WSP office closes at lunchtime tomorrow until 10th January. Of the three resolutions, the decision between network and intersection peak is a quick one to update if required and those intersection where this is all that needs changed can be done and hopefully re-issued tomorrow.

Those intersections that require attention for the other resolutions will take longer to modify. QVAN DEN DRIES David (URPM) given you will give us direction tomorrow on what exactly needs done, for these intersections that are a more time consuming update, would you be comfortable in approving these without seeing the outputs given we have already correctly forecast 18 of the intersections and those remaining you will have given us clear direction on? Otherwise, for this handful of intersections, would you be able to give someone in your team the target forecast data to sign it off in your absence – we will be able to issue by COB 11th Jan at the latest?

Thanks all

Mark Fowler

Regional Executive; Planning and Mobility, WA

T: +61 8 94894366

Mark.Fowler@wsp.com

WSP Australia Pty Limited Level 5, 503 Murray St Perth, WA, 6000 Australia

wsp.com/au

WSP acknowledges that every project we work on takes place on First Peoples lands. We recognise Aboriginal and Torres Strait Islander Peoples as the first scientists and engineers and pay our respects to Elders past and present.

From: VAN DEN DRIES David (URPM) < david.vandendries@mainroads.wa.gov.au>

Sent: Wednesday, 22 December 2021 3:22 PM

To: Fowler, Mark < <u>Mark.Fowler@wsp.com</u>>; Mohammad Jan < <u>Mohammad.Jan@pta.wa.gov.au</u>>; Eddie Mesina < <u>Eddie.Mesina@pta.wa.gov.au</u>>

Cc: BROADHURST Lindsay (DRPD) < !indsay.broadhurst@maintoads.wa.gov.au; FOURIE Paul (NPDM)

<paul.fourie@mainroads.wa.gov.au>

Subject: RE: Byford Rail Extension forecast traffic volumes

Hi Mark,

I have reviewed your assessment in determining the likely future demand for BRE project. The attached files are those files which have issues associated with them. They require correcting. All other files are OK.

The issue identified in each attached intersection assessment varies where some are just coding errors from existing AM and PM video surveys. Where there are no road links as shown in the ROM24 link volume plots, please adopt 3% linear growth for those links using the existing video surveys as the basis.

I have included for you an enlargement of the link volume plots for the Armadale Road/Abbey Road/Railway Avenue intersection assessment. The plots which have been provided previously did not illustrate the demand on Railway Avenue where it approaches Armadale Road.

Once I have receive the corrected files (hopefully just after the new year) I will make time to review the assessment.

Please be mindful that I will be on leave for some 6 months commencing from the 7th January 2022. I am also away between Xmas and the New Year.

Best wishes

David Van Den Dries

From: Fowler, Mark < Mark < Mark.Fowler@wsp.com>
Sent: Tuesday, 21 December 2021 12:04 PM

To: VAN DEN DRIES David (URPM) < david.vandendries@mainroads.wa.gov.au >; Mohammad Jan

<Mohammad.Jan@pta.wa.gov.au>; Eddie Mesina <Eddie.Mesina@pta.wa.gov.au>

Cc: BROADHURST Lindsay (DRPD) < lindsay.broadhurst@mainroads.wa.gov.au>; FOURIE Paul (NPDM)

<paul.fourie@mainroads.wa.gov.au>

Subject: RE: Byford Rail Extension forecast traffic volumes

Importance: High

CAUTION: This email originated from outside of Main Roads. Do not click links or open attachments unless you recognise the sender and know the content is safe.

Hi David

I can confirm this has all been reviewed, noting also this is the first time you have seen the Abernethy / Sansimeon site as the compression software seemed to have omitted it previously.

With the comments we have provided for the other intersections where you have previously disputed the coding of traffic data, you will see that in our response, we have used a network peak instead of the intersection peak given we are modelling the intersections as networks – using the intersection peaks will cause disparity in approach and departure volumes. The coding of the data using the network peaks is correct. I believe this could be the issue you are identifying with this intersection also – can you please confirm?

With the 3% traffic growth, this has been adopted and the outputs provided (for comparison to the original adopted method), but also in our previous issue of data you will see we have raised some site-specific questions about the adoption of the 3% growth, and also set out how we developed these forecasts without adopting the 3% growth – is your email below an answer to these questions and an instruction to adopt 3% growth as the default approach, even where we have raised concerns about doing so?

Can I ask that you please populate any specific comments / concerns in the spreadsheet we provided so we can be targeted in addressing them – it would make this process much easier and assist with the auditing process.

Thanks Mark

Mark Fowler

Regional Executive; Planning and Mobility, WA

T: +61 8 94894366

Mark.Fowler@wsp.com

WSP Australia Pty Limited Level 5, 503 Murray St Perth, WA, 6000 Australia

wsp.com/au

WSP acknowledges that every project we work on takes place on First Peoples lands. We recognise Aboriginal and Torres Strait Islander Peoples as the first scientists and engineers and pay our respects to Elders past and present.

From: VAN DEN DRIES David (URPM) <david.vandendries@mainroads.wa.gov.au>

Sent: Tuesday, 21 December 2021 10:58 AM

To: Fowler, Mark < Mark. Fowler@wsp.com >; Mohammad Jan < Mohammad. Jan@pta.wa.gov.au >; Eddie Mesina

<Eddie.Mesina@pta.wa.gov.au>

Cc: BROADHURST Lindsay (DRPD) < lindsay.broadhurst@mainroads.wa.gov.au>; FOURIE Paul (NPDM)

<paul.fourie@mainroads.wa.gov.au>

Subject: RE: Byford Rail Extension forecast traffic volumes

Hi Mohammad and Eddie,

I have just started to check WSP re-assessment based on my email response dated 9 December 2021. The first file which I had reviewed was the Abernethy Road/Sansimeon Boulevard intersection. The 2036 demand as derived by WSP does not correlate to the demand which I had computed. The issue here is the inputs are coded incorrectly. Has this been checked by WSP prior to sending these files to Main Roads for review? Also, where there is no road link as presented in ROM24, hence I would adopt a growth of 3% linear in this instance from base 2021 traffic survey.

I will not be reviewing the remaining files until I have been informed that these outstanding files/issues been checked by WSP and confirm that they have addressed the concerns raised in the 9 December 2021 email.

Please note that URGENT action is required as of 7th January 2022 I will be away from the office for some 7months.

Best wishes

David Van Den Dries

From: Fowler, Mark < Mark < Mark.Fowler@wsp.com>
Sent: Friday, 17 December 2021 2:12 PM

To: Mohammad Jan < Mohammad.Jan@pta.wa.gov.au>; VAN DEN DRIES David (URPM)

david.vandendries@mainroads.wa.gov.au

Cc: Eddie Mesina Eddie.Mesina@pta.wa.gov.au

Subject: RE: Byford Rail Extension forecast traffic volumes

CAUTION: This email originated from outside of Main Roads. Do not click links or open attachments unless you recognise the sender and know the content is safe.

Hi David / Mohammad

Please see attached updated files, and a spreadsheet containing the comments, our response and the proposed next steps.

Thanks

Mark Fowler

Regional Executive; Planning and Mobility, WA

T: +61 8 94894366

Mark.Fowler@wsp.com

WSP Australia Pty Limited Level 5, 503 Murray St Perth, WA, 6000 Australia

wsp.com/au

WSP acknowledges that every project we work on takes place on First Peoples lands. We recognise Aboriginal and Torres Strait Islander Peoples as the first scientists and engineers and pay our respects to Elders past and present.

From: Jan, Mohammad < Mohammad.Jan@pta.wa.gov.au >

Sent: Friday, 10 December 2021 8:32 AM **To:** Fowler, Mark < <u>Mark.Fowler@wsp.com</u>> **Cc:** Mesina, Eddie < <u>Eddie.Mesina@pta.wa.gov.au</u>>

Subject: FW: Byford Rail Extension forecast traffic volumes

Importance: High

Hi Mark,

Following are the comments from MRWA for your action and information.

Regards

Mohammad Asif Jan
BSc (Civil Eng), MIEAust, CPEng, NER
Project Manager
Byford Rail Extension

Office of Major Transport Infrastructure Delivery(OMTID)

Tel: (08) 9326 5811 | Mob: 0402 33 44 34 34 - 50 Stirling Street Perth WA 6000

Department of Transport
Main Roads Western Australia
Public Transport Authority

From: VAN DEN DRIES David (URPM) <david.vandendries@mainroads.wa.gov.au>

Sent: Thursday, 9 December 2021 4:53 PM

To: Mesina, Eddie <<u>Eddie.Mesina@pta.wa.gov.au</u>>; Jan, Mohammad <<u>Mohammad.Jan@pta.wa.gov.au</u>> Cc: BROADHURST Lindsay (DRPD) <<u>lindsay.broadhurst@mainroads.wa.gov.au</u>>; FOURIE Paul (NPDM)

<paul.fourie@mainroads.wa.gov.au>

Subject: Byford Rail Extension forecast traffic volumes

Importance: High

Hi Eddie and Mohammad,

Please note that I have computed 2026 and 2036 demands. If you require other design years like 2041 for example, please let me know.

I have now assessed my generated outputs with those from WSP and the following are my comments:

There are three intersection assessments missing from the set provided by WSP.

- Armadale Road/Abbey Road/Railway Ave intersection
- South West Highway/Pitman Way
- Abernethy Road/Sansimeon Boulevard

The following intersection outputs where they differ from what I have computed are as follows:

- Armadale Road/Orchard Road AM 2021 traffic survey demand incorrectly coded.
- Forrest Road/Neerigen Street some ROM24 values cannot be provided. In this case there should be some allowances for growth. I would adopt a growth of 3% linear in this instance from base 2021 traffic survey.
- Forrest Road/Commerce Avenue/Shopping center WSP has not included the "U" turn demand in their assessment as indicated in the 2021 traffic surveys.
- Church Avenue/William Street inputs error from 24 hr traffic survey and ROM24.
- Church Avenue/Hobbs/Commerce Avenue how did WSP compute the forecast flows for both Hobbs and
 Commerce Avenue???? There are no ROM24 links. In this case there should be some allowances for growth.
 I would adopt a growth of 3% linear in this instance from base 2021 traffic survey. Base inputs parameters
 from traffic survey coded incorrectly. WSP has not included the "U" turn demand in their assessment as
 indicated in the 2021 traffic surveys.

- SWH/Eleventh Avenue Base inputs parameters from traffic survey coded incorrectly.
- SWH/Thomas Road Base inputs parameters from traffic survey coded incorrectly.
- SWH/Larsen Road Base inputs parameters from traffic survey coded incorrectly.

All other intersection have computed correctly.

If you require clarification with the above advise, please do not hesitate to contact me on 93234917. Please note that I do not work on Fridays.

Best wishes

David Van Den Dries Urban Road Planning Manager

Planning and Technical Services Directorate

p: +61 Telephone (08) 93234917 | m: +61 438969981

w: www.mainroads.wa.gov.au

NOTICE: This communication and any attachments ("this message") may contain information which is privileged, confidential, proprietary or otherwise subject to restricted disclosure under applicable law. This message is for the sole use of the intended recipient(s). Any unauthorized use, disclosure, viewing, copying, alteration, dissemination or distribution of, or reliance on, this message is strictly prohibited. If you have received this message in error, or you are not an authorized or intended recipient, please notify the sender immediately by replying to this message, delete this message and all copies from your e-mail system and destroy any printed copies.

J A EmHhHzd IzRITWfa/Has7nhKI

Fowler, Mark

From: Mesina, Eddie <Eddie.Mesina@pta.wa.gov.au>

Sent: Thursday, 23 December 2021 8:27 AM

To: Fowler, Mark; VAN DEN DRIES David (URPM); Jan, Mohammad

Cc: BROADHURST Lindsay (DRPD); FOURIE Paul (NPDM); Selby, Tim; Ling, Bruce

Subject: RE: Byford Rail Extension forecast traffic volumes

Hi Mark,

Thanks for letting us know about the potential imbalance at the intersection. This is noted from our side. Please proceed to satisfy David's requirements.

Regards, Eddie

Eddie Mesina

Principal Civil Engineer | PTA Project Delivery

Public Transport Authority of Western Australia Public Transport Centre, West Parade, Perth, 6000 PO Box 8125, Perth Business Centre, WA, 6849

Tel: (08) 9326 5493 Fax: (08) 9326 2000

Email: eddie.mesina@pta.wa.gov.au | Web: www.pta.wa.gov.au

The Public Transport Authority of Western Australia cannot accept any liability for any loss or damage sustained as a result of software viruses. You must carry out such virus checking as is necessary before opening any attachment to this message. The information in this email and any files transmitted with it may be of a privileged and/or confidential nature and is intended solely for the addressee(s). If you are not an intended addressee please notify the sender immediately, and note that any disclosure, copying or distribution by you is prohibited and may be unlawful. The views expressed in this email are not necessarily the views of the Public Transport Authority.

From: Fowler, Mark < Mark.Fowler@wsp.com> Sent: Thursday, 23 December 2021 8:09 AM

To: VAN DEN DRIES David (URPM) <david.vandendries@mainroads.wa.gov.au>; Jan, Mohammad

<Mohammad.Jan@pta.wa.gov.au>; Mesina, Eddie <Eddie.Mesina@pta.wa.gov.au>

Cc: BROADHURST Lindsay (DRPD) < lindsay.broadhurst@mainroads.wa.gov.au>; FOURIE Paul (NPDM)

<paul.fourie@mainroads.wa.gov.au>; Selby, Tim <tim.selby@wsp.com>; Ling, Bruce <Bruce.Ling@wsp.com>

Subject: RE: Byford Rail Extension forecast traffic volumes

Hi all

Sorry, just to clarify a couple of things

@Mohammad Jan @Eddie Mesina the question in red text below was for you both, and needs an urgent answer within the next hour before I speak to David.

There are 18 intersections approved, so on the 10th January we can start the future year modelling on these 18.

Thanks

Appendix B

URP Traffic Volume Forecasts

B1 2026 volume forecasts

Intersection	Approach	Turn	2026 volu	mes (veh)
			AM Peak	PM Peak
Armadale Road/ Abbey	North	L	379	406
Road/ Railway Road		Т	251	319
		R	36	55
	South	L	57	118
		Т	299	302
		R	106	143
	East	L	66	80
		T	561	765
		R	235	335
	West	L	40	53
		Т	726	654
		R	109	103
Armadale Road/ Streich	North	L	161	232
Avenue		R	38	41
	East	Т	808	1131
		R	71	128
	West	L	193	181
		T	1039	1044
Armadale Road/ Orchard	South	L	138	311
Avenue		R	25	43
	East	L	125	82
		Т	700	865
	West	Т	738	839
		R	395	337
Armadale Road/ Church	South	L	107	255
Avenue		R	68	113
	East	L	30	31
		T	786	734

Intersection	Approach	Turn	2026 v	volumes (veh)
			AM Peak	PM Peak
	West	T	567	673
		R	194	171
Armadale Level Crossing	East	Т	862	1198
	West	Т	1232	1225
Church Avenue/ Green	North	L	95	69
Avenue/ Wungong Road		Т	65	113
		R	7	19
	South	L	1	5
		Т	107	104
		R	138	106
	East	L	63	130
		Т	147	219
		R	113	98
	West	L	26	11
		Т	274	204
		R	6	17
Church Avenue Level	East	Т	325	448
Crossing	West	Т	482	361
Church Avenue/ Hobbs	North	L	8	14
Drive/ Commerce Avenue		Т	16	20
		R	56	135
	South	L	151	132
		Т	55	35
		R	25	32
	East	L	26	29
		Т	150	208
		R	4	1
	West	L	117	103
		Т	206	210
		R	158	93

Intersection	Approach	Turn	2026 volu	mes (veh)
			AM Peak	PM Peak
Church Avenue/ William	North	L	66	193
Street		Т	88	181
		R	18	6
	South	L	24	9
		Т	112	139
		R	107	111
	East	L	111	55
		Т	121	64
		R	84	72
	West	L	11	21
		Т	73	204
		R	14	30
Forrest Road/ Aragon Court	North	L	4	11
		R	0	0
	East	Т	402	454
		R	0	0
	West	L	6	11
	/	T	353	387
Forrest Road Level	East	T	402	454
Crossing	West	T	357	398
Forrest Road/ Neerigen	North	L	301	284
Court		R	0	0
	East	Т	382	447
		R	97	106
	West	L	60	81
		Т	298	312
SWH/ Eleventh Road	North	Т	569	1049
		R	23	45
	South	L	112	115
		T	1058	705

Intersection	Approach	Turn	2026 volu	mes (veh)
			AM Peak	PM Peak
	West	L	30	37
		R	102	123
SWH/ William Street/	North	L	32	33
Bedfordale Road		T	418	633
		R	33	35
	South	L	177	128
		T	810	677
		R	23	15
	East	L	11	17
		T	53	34
		R	44	18
	West	L	63	54
		T	43	90
		R	131	290
SWH/ Dickens Place	North	T	546	988
		R	45	57
	South	L	15	23
	/	T	1043	688
	West	L	55	88
		R	9	25
SWH/ Stone Street	North	T	567	1025
		R	21	15
	South	L	39	35
		Т	1007	675
	West	L	33	33
		R	33	119

B2 2036 volume forecasts

Intersection	Approach	Turn	2036 volu	mes (veh)
			AM Peak	PM Peak
Armadale Road/ Abbey	North	L	501	536
Road/ Railway Road		Т	332	422
		R	47	73
	South	L	76	156
		T	395	400
		R	141	189
	East	L	75	91
		Т	642	876
		R	269	384
	West	L	41	54
		Т	745	672
		R	112	105
Armadale Road/ Streich	North	L	285	410
Avenue		R	67	72
	East	Т	1,008	1,411
		R	89	159
	West	L	219	205
		Т	1,175	1,181
Armadale Road/ Orchard	South	L	156	352
Avenue		R	28	48
	East	L	156	102
		Т	870	1,075
	West	Т	926	1,053
		R	496	423
Armadale Road/ Church	South	L	143	342
Avenue		R	91	152
	East	L	38	40

Intersection	Approach	Turn	2036	volumes (veh)
			AM Peak	PM Peak
		Т	1,004	938
	West	Т	718	853
		R	246	217
Armadale Level Crossing	East	Т	990	1,376
	West	Т	1,394	1,386
Church Avenue/ Green	North	L	158	115
Avenue/ Wungong Road		Т	109	189
		R	12	31
	South	L	1	6
		Т	135	131
		R	174	133
	East	L	75	154
		Т	175	260
		R	134	117
	West	L	39	17
		Т	410	306
		R	8	25
Church Avenue Level	East	Т	385	532
Crossing	West	Т	580	434
Church Avenue/ Hobbs	North	L	10	17
Drive/ Commerce Avenue		Т	20	25
		R	71	170
	South	L	190	167
		Т	70	44
		R	32	41
	East	L	34	38
		Т	196	273
		R	5	1
	West	L	140	123
		Т	247	251

Intersection	Approach	Turn	2036 vol	umes (veh)
			AM Peak	PM Peak
		R	189	111
Church Avenue/ William	North	L	73	212
Street		Т	97	199
		R	20	6
	South	L	31	12
		Т	149	184
		R	141	147
	East	L	217	107
		Т	237	125
		R	163	140
	West	L	20	39
		Т	135	379
		R	25	56
Forrest Road/ Aragon Court	North	L	6	14
		R	0	0
	East	Т	529	597
		R	0	0
	West	L	8	13
		Т	446	489
Forrest Road Level	East	Т	529	597
Crossing	West	Т	452	503
Forrest Road/ Neerigen	North	L	380	358
Court		R	0	0
	East	T	480	561
		R	122	133
	West	L	76	102
		Т	376	394
SWH/ Eleventh Road	North	Т	817	1,508
		R	33	65
	South	L	170	174

Intersection	Approach	Turn	2036 vol	umes (veh)
			AM Peak	PM Peak
		Т	1,602	1,068
	West	L	47	58
		R	161	194
SWH/ William Street/	North	L	39	41
Bedfordale Road		Т	524	793
		R	41	44
	South	L	254	184
		Т	1,159	969
		R	33	21
	East	L	30	45
		Т	143	93
		R	118	48
	West	L	94	81
		Т	65	136
		R	197	436
SWH/ Dickens Place	North	Т	747	1,353
		R	62	78
	South	L	21	33
		Т	1470	970
	West	L	83	134
		R	14	37
SWH/ Stone Street	North	Т	779	1,408
		R	29	21
	South	L	55	48
		Т	1,413	948
	West	L	63	63
		R	63	230

Appendix C

SIDRA Modelling Results (2026)

C1 Individual sites – Do Nothing

C1.1 SWH/ William St/ Bedfordale Hill Rd

C1.1.1 AM Peak

	Movell	nent Perfor	mance											
Mov ID	Turn	INPUT VC [Total veh/h	DLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: S	outh We	stern Highw	ay South											
3	L1	177	3.8	186	3.8	* 0.664	31.3	LOS C	17.4	143.7	0.85	0.88	0.85	36.7
4	T1	810	9.8	853	9.8	* 0.664	25.0	LOS C	17.9	153.1	0.83	0.85	0.83	42.2
5	R2	23	10.0	24	10.0	0.062	20.4	LOS C	0.7	5.3	0.62	0.66	0.62	38.5
Approac	:h	1010	8.8	1063	8.8	0.664	26.0	LOS C	17.9	153.1	0.83	0.85	0.83	41.1
East: Be	dfordale	Hill Road Ea	ast											
5	L2	11	0.0	12	0.0	0.338	50.0	LOS D	3.1	22.7	0.97	0.75	0.97	28.5
5a	R1	53	0.0	56	0.0	* 0.338	48.3	LOS D	3.1	22.7	0.97	0.75	0.97	25.9
7	R2	44	6.4	46	6.4	0.252	49.9	LOS D	2.1	16.5	0.96	0.74	0.96	27.5
Approac	:h	108	2.6	114	2.6	0.338	49.1	LOS D	3.1	22.7	0.96	0.74	0.96	26.8
North: S	outh We	stern Highwa	ay North											
В	L2	32	13.8	34	13.8	0.289	23.2	LOS C	6.4	54.7	0.65	0.58	0.65	38.9
9	T1	418	10.7	440	10.7	0.289	15.9	LOS B	6.8	58.2	0.63	0.55	0.63	47.3
10	R3	33	0.0	35	0.0	* 0.175	25.2	LOS C	1.0	7.0	0.81	0.72	0.81	38.5
Approac	:h	483	10.2	508	10.2	0.289	17.1	LOS B	6.8	58.2	0.65	0.57	0.65	46.1
NorthWe	est: Willia	am Street No	rth-West											
11	L3	63	1.8	66	1.8	0.348	23.6	LOS C	2.7	20.2	0.88	0.76	0.88	39.5
1	L1	43	2.6	45	2.6	0.348	21.5	LOS C	2.7	20.2	0.88	0.76	0.88	34.4
2	R1	131	5.2	138	5.2	* 0.626	49.4	LOS D	6.5	50.7	1.00	0.82	1.04	29.5
Approac	:h	237	3.8	249	3.8	0.626	37.5	LOS D	6.5	50.7	0.95	0.80	0.97	32.5
All Vehic	eles	1838	8.1	1935	8.1	0.664	26.5	LOS C	17.9	153.1	0.80	0.76	0.81	40.1

C1.1.2 PM Peak

Mov ID	Turn	INPUT VO	DLUMES	DEMAND	FLOWS	Deg. Satn	Aver. Delay	Level of Service		ACK OF EUE	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver Speed
יוו		[Total veh/h	HV] %	[Total veh/h	HV]	v/c	sec	Service	[Veh.	Dist]	Que	Stop Rate	Oycles	km/
South:	South V	/estern High			70	V/C	300		VCII	""				KIII/
3	L1	128	0.9	135	0.9	* 0.573	33.1	LOS C	13.8	110.7	0.83	0.86	0.83	36.
4	T1	677	8.5	713	8.5	* 0.573	26.9	LOS C	14.2	117.7	0.81	0.83	0.81	41.
5	R2	15	7.7	16	7.7	0.059	23.7	LOS C	0.5	3.7	0.71	0.66	0.71	37.
Appro	ach	820	7.3	863	7.3	0.573	27.8	LOS C	14.2	117.7	0.82	0.83	0.82	40.4
East: I	Bedforda	le Hill Road	East											
6	L2	17	11.1	18	11.1	0.770	63.7	LOS E	2.9	23.3	1.00	0.87	1.36	25.
6a	R1	34	5.4	36	5.4	* 0.770	61.7	LOS E	2.9	23.3	1.00	0.87	1.36	22.
7	R2	18	10.5	19	10.5	0.157	54.3	LOS D	0.9	7.4	0.97	0.70	0.97	26.
Appro	ach	69	8.1	73	8.1	0.770	60.2	LOS E	2.9	23.3	0.99	0.83	1.26	24.
North:	South W	estern High	way North											
8	L2	33	0.0	35	0.0	0.454	27.4	LOS C	11.2	92.4	0.75	0.67	0.75	38.
9	T1	633	8.1	666	8.1	0.454	20.4	LOS C	12.1	100.9	0.74	0.65	0.74	44.8
10	R3	35	9.4	37	9.4	* 0.173	27.1	LOS C	1.1	9.1	0.79	0.71	0.79	37.
Appro	ach	701	7.8	738	7.8	0.454	21.1	LOS C	12.1	100.9	0.74	0.65	0.74	44.
North\	Vest: Wil	liam Street	North-Wes	t										
11	L3	54	4.3	57	4.3	0.388	28.9	LOS C	4.1	31.2	0.89	0.80	0.89	36.
1	L1	90	2.5	95	2.5	0.388	26.7	LOS C	4.1	31.2	0.89	0.80	0.89	32.
2	R1	290	3.1	305	3.1	* 0.830	51.0	LOS D	15.8	120.2	1.00	0.96	1.21	29.
Appro	ach	434	3.1	457	3.1	0.830	43.2	LOS D	15.8	120.2	0.96	0.91	1.10	30.
	nicles	2024	6.6	2131	6.6	0.830	29.9	LOS C	15.8	120.2	0.83	0.79	0.87	38.

C1.2 SWH/ Dickens Place

C1.2.1 AM Peak

Vehicle	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: \$	South We	estern Highv	vay South											
1 2	L2 T1	15 1043	7.7 7.0	16 1098	7.7 7.0	0.621 0.621	6.8 0.3	LOS A LOS A	0.0	0.0	0.00	0.01 0.01	0.00	63.2 69.1
Approac	ch	1058	7.0	1114	7.0	0.621	0.4	NA	0.0	0.0	0.00	0.01	0.00	69.0
North: S	South We	stern Highw	ay North											
8	T1	546	7.8	575	7.8	0.557	10.9	LOS B	11.2	92.9	1.00	0.07	1.30	56.2
9	R2	45	22.5	47	22.5	0.557	36.2	LOS E	11.2	92.9	1.00	0.07	1.30	47.0
Approac	ch	591	8.9	622	8.9	0.557	12.9	NA	11.2	92.9	1.00	0.07	1.30	55.4
West: D	ickens P	lace West												
10	L2	55	13.8	58	13.8	0.395	25.4	LOS D	1.4	12.1	0.92	1.03	1.14	35.0
12	R2	9	40.0	9	40.0	0.395	79.6	LOS F	1.4	12.1	0.92	1.03	1.14	31.4
Approac	ch	64	17.5	67	17.5	0.395	33.0	LOS D	1.4	12.1	0.92	1.03	1.14	34.4
All Vehi	cles	1713	8.1	1803	8.1	0.621	5.9	NA	11.2	92.9	0.38	0.07	0.49	61.5

C1.2.2 PM Peak

Vehic	le Move	ment Per	formance											
Mov ID	Turn	INPUT V	OLUMES	DEMAND	FLOWS	Deg. Satn	Aver. Delay	Level of Service		ACK OF EUE	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m				km/h
South:	South W	estern Hig	hway South	า										
1	L2	23	5.0	24	5.0	0.420	6.6	LOSA	0.0	0.0	0.00	0.02	0.00	64.3
2	T1	688	7.3	724	7.3	0.420	0.1	LOSA	0.0	0.0	0.00	0.02	0.00	69.4
Approa	ach	711	7.2	748	7.2	0.420	0.3	NA	0.0	0.0	0.00	0.02	0.00	69.2
North:	South W	estern High	nway North											
8	T1	988	4.6	1040	4.6	0.653	2.4	LOSA	3.5	27.6	0.28	0.04	0.45	65.7
9	R2	57	17.7	60	17.7	0.653	21.2	LOS C	3.5	27.6	0.28	0.04	0.45	53.7
Approa	ach	1045	5.3	1100	5.3	0.653	3.4	NA	3.5	27.6	0.28	0.04	0.45	65.0
West: I	Dickens	Place West	t											
10	L2	88	9.7	93	9.7	0.421	14.0	LOS B	1.7	13.4	0.83	1.02	1.11	40.2
12	R2	25	0.0	26	0.0	0.421	47.0	LOS E	1.7	13.4	0.83	1.02	1.11	42.0
Approa	ach	113	7.6	119	7.6	0.421	21.3	LOS C	1.7	13.4	0.83	1.02	1.11	40.6
All Veh	icles	1869	6.2	1967	6.2	0.653	3.3	NA	3.5	27.6	0.20	0.09	0.32	64.1

C1.3 SWH/ Stone Street

C1.3.1 AM Peak

Vehic	le Move	ement Per	formance											
Mov ID	Turn	INPUT V	DLUMES	DEMAND	FLOWS	Deg. Satn	Aver. Delay	Level of Service		ACK OF EUE	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m				km/h
South:	South V	Vestern Hig	hway Soutl	n										
1b	L3	39	11.8	41	11.8	0.028	7.6	LOSA	0.0	0.0	0.00	0.63	0.00	56.0
2	T1	1007	5.9	1060	5.9	0.581	0.3	LOSA	0.0	0.0	0.00	0.00	0.00	69.3
Approa	ach	1046	6.1	1101	6.1	0.581	0.5	NA	0.0	0.0	0.00	0.02	0.00	68.7
North:	South W	estern High	nway North											
8	T1	567	8.4	597	8.4	0.342	0.1	LOSA	0.0	0.0	0.00	0.00	0.00	69.7
9a	R1	21	27.9	22	27.9	0.185	34.1	LOS D	0.5	5.6	0.90	0.96	0.94	37.6
Approa	ach	588	9.1	619	9.1	0.342	1.3	NA	0.5	5.6	0.03	0.03	0.03	67.7
South	Vest: Sto	one Street S	South-West											
30a	L1	33	31.6	35	31.6	1.622	657.9	LOS F	21.6	226.4	1.00	2.51	5.85	4.6
32b	R3	33	15.8	35	15.8	1.622	720.0	LOS F	21.6	226.4	1.00	2.51	5.85	4.6
Approa	ach	66	23.7	69	23.7	1.622	689.0	LOSF	21.6	226.4	1.00	2.51	5.85	4.6
All Veh	icles	1700	7.8	1789	7.8	1.622	27.5	NA	21.6	226.4	0.05	0.12	0.24	44.3

C1.3.2 PM Peak

Vehicle	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT VO [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: \$	South We	estern Highw	ay South											
1b 2	L3 T1	35 675	16.6 6.5	37 711	16.6 6.5	0.027 0.392	7.7 0.1	LOS A LOS A	0.0	0.0	0.00	0.63 0.00	0.00	54.8 69.7
Approa	ch	710	7.0	747	7.0	0.392	0.5	NA	0.0	0.0	0.00	0.03	0.00	68.7
North: 9	South We	stern Highw	ay North											
8	T1	1025	4.0	1079	4.0	0.584	0.3	LOS A	0.0	0.0	0.00	0.00	0.00	69.3
9a	R1	15	38.5	16	38.5	0.069	18.8	LOS C	0.2	2.7	0.75	0.89	0.75	44.7
Approa	ch	1040	4.5	1095	4.5	0.584	0.5	NA	0.2	2.7	0.01	0.01	0.01	68.8
SouthW	est: Stor	ne Street So	uth-West											
30a	L1	33	26.3	35	26.3	4.630	3307.6	LOS F	90.4	796.9	1.00	3.27	8.89	1.1
32b	R3	119	7.2	125	7.2	4.630	3333.4	LOS F	90.4	796.9	1.00	3.27	8.89	1.1
Approa	ch	152	11.3	160	11.3	4.630	3327.8	LOS F	90.4	796.9	1.00	3.27	8.89	1.1
All Vehi	cles	1902	6.0	2002	6.0	4.630	266.4	NA	90.4	796.9	0.09	0.28	0.72	11.1

C1.4 SWH/ Eleventh Road

C1.4.1 AM Peak

Vehicl	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT VO [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highw	ay South											
1 2	L2 T1	112 1058	10.0 6.6	118 1114	10.0 6.6	0.073 0.633	7.1 0.3	LOS A LOS A	0.0	0.0	0.00	0.63 0.00	0.00	62.0 79.1
Approa		1170	6.9	1232	6.9	0.633	0.9	NA	0.0	0.0	0.00	0.06	0.00	77.1
North: 9	South We	stern Highw	ay North											
8	T1	569	9.9	599	9.9	0.347	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	79.7
9	R2	23	5.3	24	5.3	0.144	25.9	LOS D	0.4	2.9	0.87	0.96	0.87	47.6
Approa	ch	592	9.7	623	9.7	0.347	1.1	NA	0.4	2.9	0.03	0.04	0.03	77.7
West: E	Eleventh F	Road West												
10	L2	30	17.4	32	17.4	3.879	2640.6	LOS F	74.6	557.8	1.00	2.39	8.68	1.3
12	R2	102	7.7	107	7.7	3.879	2665.0	LOS F	74.6	557.8	1.00	2.39	8.68	1.3
Approa	ch	132	9.9	139	9.9	3.879	2659.4	LOS F	74.6	557.8	1.00	2.39	8.68	1.3
All Vehi	icles	1894	8.0	1994	8.0	3.879	186.3	NA	74.6	557.8	0.08	0.22	0.62	15.3

C1.4.2 PM Peak

Vehicle	e Mover	nent Perfor	mance											
Mov ID	Turn	INPUT VC [Total veh/h	DLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highw	ay South											
1	L2	115	2.2	121	2.2	0.068	7.0	LOS A	0.0	0.0	0.00	0.63	0.00	64.6
2	T1	705	7.6	742	7.6	0.421	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	79.6
Approa	ch	820	6.8	863	6.8	0.421	1.1	NA	0.0	0.0	0.00	0.09	0.00	77.1
North: 9	South We	stern Highwa	ay North											
8	T1	1049	4.0	1104	4.0	0.599	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	79.2
9	R2	45	8.1	47	8.1	0.125	14.5	LOS B	0.4	2.8	0.70	0.89	0.70	55.3
Approa	ch	1094	4.2	1152	4.2	0.599	0.8	NA	0.4	2.8	0.03	0.04	0.03	77.9
West: E	leventh F	Road West												
10	L2	37	3.6	39	3.6	5.903	4460.6	LOS F	102.3	730.9	1.00	2.31	8.05	0.8
12	R2	123	2.1	129	2.1	5.903	4485.1	LOS F	102.3	730.9	1.00	2.31	8.05	0.8
Approa	ch	160	2.4	168	2.4	5.903	4479.4	LOS F	102.3	730.9	1.00	2.31	8.05	0.8
All Vehi	cles	2074	5.1	2183	5.1	5.903	346.4	NA	102.3	730.9	0.09	0.23	0.64	9.1

C1.5 Eleventh Road/ Wungong Road

C1.5.1 AM Peak

Vehicl	e Moven	nent Perfo	rmance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthE	ast: Eleve	enth Road S	outh-East											
5	T1	156	9.7	164	9.7	0.134	0.4	LOSA	0.3	2.8	0.18	0.16	0.18	75.4
6	R2	47	0.0	49	0.0	0.134	8.0	LOS A	0.3	2.8	0.18	0.16	0.18	63.3
Approa	ch	203	7.5	214	7.5	0.134	2.2	NA	0.3	2.8	0.18	0.16	0.18	71.9
NorthE	ast: Wung	gong Road I	North-East											
7	L2	46	7.7	48	7.7	0.028	6.1	LOSA	0.1	1.0	0.29	0.54	0.29	54.9
9	R2	91	14.3	96	14.3	0.105	6.9	LOS A	0.3	2.1	0.31	0.67	0.31	51.3
Approa	ch	137	12.1	144	12.1	0.105	6.6	LOSA	0.3	2.1	0.30	0.63	0.30	52.5
NorthW	est: Elev	enth Road N	North-West											
10	L2	191	10.5	201	10.5	0.168	7.2	LOSA	0.0	0.0	0.00	0.44	0.00	61.5
11	T1	89	8.1	94	8.1	0.168	0.0	LOS A	0.0	0.0	0.00	0.44	0.00	71.7
Approa	ch	280	9.7	295	9.7	0.168	4.9	NA	0.0	0.0	0.00	0.44	0.00	64.4
All Veh	icles	620	9.5	653	9.5	0.168	4.4	NA	0.3	2.8	0.13	0.39	0.13	63.4

C1.5.2 PM Peak

	e Moven	nent Perfo												
Mov ID	Turn	INPUT VO [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthE	ast: Eleve	enth Road S		VCII/II	70	VIC	300		VCII	- '''				KIIDI
5	T1	169	4.0	178	4.0	0.151	0.6	LOS A	0.5	3.6	0.21	0.17	0.21	75.2
6	R2	57	8.8	60	8.8	0.151	8.4	LOSA	0.5	3.6	0.21	0.17	0.21	59.5
Approa	ich	226	5.2	238	5.2	0.151	2.5	NA	0.5	3.6	0.21	0.17	0.21	70.1
NorthE	ast: Wung	gong Road N	North-East											
7	L2	55	0.0	58	0.0	0.033	6.1	LOS A	0.2	1.1	0.31	0.55	0.31	57.6
9	R2	215	7.2	226	7.2	0.249	7.1	LOS A	0.7	5.3	0.36	0.72	0.36	53.1
Approa	ich	270	5.7	284	5.7	0.249	6.9	LOSA	0.7	5.3	0.35	0.69	0.35	54.0
NorthW	/est: Elev	enth Road N	lorth-West											
10	L2	148	11.6	156	11.6	0.175	7.2	LOS A	0.0	0.0	0.00	0.33	0.00	62.4
11	T1	142	7.1	149	7.1	0.175	0.0	LOS A	0.0	0.0	0.00	0.33	0.00	73.7
Approa	ich	290	9.4	305	9.4	0.175	3.7	NA	0.0	0.0	0.00	0.33	0.00	67.5
All Veh	icles	786	6.9	827	6.9	0.249	4.5	NA	0.7	5.3	0.18	0.41	0.18	62.8

C2 Individual sites – Do Something

C2.1 SWH/ Dickens Place

C2.1.1 AM Peak – Priority Controlled – two staged – with SWH duplication

Network Performance - Hourly Values			
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS A 0.97 9.67 1.03		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	67.2 km/h 1827.1 veh-km/h 27.2 veh-h/h 69.3 km/h		67.2 km/h 2192.6 pers-km/h 32.6 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	1860 veh/h 1860 veh/h 1803 veh/h 0 veh/h 0 veh/h 8.6 % 8.6 % 0.306		2232 pers/h 2232 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	0.58 veh-h/h 1.1 sec 17.0 sec 17.0 sec 0.4 sec 0.7 sec		0.69 pers-h/h 1.1 sec 17.0 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.14 147 veh/h 0.08 0.05 29.0	0.08 per km	176 pers/h 0.08 0.05 29.0
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1322.91 \$/h 187.8 L/h 10.3 L/100km 454.7 kg/h 0.031 kg/h 0.551 kg/h 1.763 kg/h	0.72 \$/km 102.8 mL/km 248.9 g/km 0.017 g/km 0.302 g/km 0.965 g/km	1322.91 \$/h

C2.1.2 PM Peak – Priority Controlled – two staged – with SWH duplication

Network Performance - Hourly Values			
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS A 0.97 9.69 1.03		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	67.0 km/h 1991.9 veh-km/h 29.7 veh-h/h 68.9 km/h		67.0 km/h 2390.3 pers-km/h 35.7 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	2054 veh/h 2054 veh/h 1967 veh/h 0 veh/h 6.4 % 6.4 % 0.283		2464 pers/h 2464 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	0.62 veh-h/h 1.1 sec 10.3 sec 10.3 sec 0.6 sec 0.5 sec		0.75 pers-h/h 1.1 sec 10.3 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.11 210 veh/h 0.10 0.06 32.2	0.11 per km	252 pers/h 0.10 0.06 32.2
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1400.32 \$/h 184.7 L/h 9.3 L/100km 444.8 kg/h 0.032 kg/h 0.580 kg/h 1.470 kg/h	0.70 \$/km 92.7 mL/km 223.3 g/km 0.016 g/km 0.291 g/km 0.738 g/km	1400.32 \$/h

C2.1.3 AM Peak - Priority Controlled - two staged - without SWH duplication

Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS A 0.97 9.62 1.03		
Congestion Coefficient	1.00		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	66.9 km/h 1826.9 veh-km/h 27.3 veh-h/h 69.3 km/h		66.9 km/h 2192.3 pers-km/h 32.8 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	1860 veh/h 1860 veh/h 1803 veh/h 0 veh/h 0 veh/h 8.6 % 8.6 % 0.612		2232 pers/h 2232 pers/h
Control Delay (Total)	0.62 veh-h/h		0.75 pers-h/h
Control Delay (Average) Control Delay (Worst Lane)	1.2 sec 19.2 sec		1.2 sec
Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	19.2 sec 0.4 sec 0.8 sec		19.2 sec
Ave. Queue Storage Ratio (Worst Lane)	0.08		
Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	145 veh/h 0.08 0.05 28.8	0.08 per km	174 pers/h 0.08 0.05 28.8
Cost (Total)	1326.70 \$/h	0.73 \$/km	1326.70 \$/h
Fuel Consumption (Total) Fuel Economy	187.7 L/h 10.3 L/100km	102.8 mL/km	1020.70 WIII
Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total)	454.7 kg/h 0.031 kg/h 0.545 kg/h	248.9 g/km 0.017 g/km 0.298 g/km	

C2.1.4 PM Peak - Priority Controlled - two staged - without SWH duplication

Network Performance - Hourly Values			
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS A 0.97 9.67 1.03		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	66.9 km/h 1991.6 veh-km/h 29.8 veh-h/h 68.9 km/h		66.9 km/h 2389.9 pers-km/h 35.7 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	2054 veh/h 2054 veh/h 1967 veh/h 0 veh/h 6.4 % 6.4 % 0.567		2464 pers/h 2464 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	0.61 veh-h/h 1.1 sec 9.6 sec 9.6 sec 0.6 sec 0.5 sec		0.73 pers-h/h 1.1 sec 9.6 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.06 202 veh/h 0.10 0.06 31.8	0.10 per km	242 pers/h 0.10 0.06 31.8
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1401.87 \$/h 184.7 L/h 9.3 L/100km 444.6 kg/h 0.032 kg/h 0.574 kg/h 1.473 kg/h	0.70 \$/km 92.7 mL/km 223.2 g/km 0.016 g/km 0.288 g/km 0.739 g/km	1401.87 \$/h

C2.2 SWH/ Stone Street

C2.2.1 AM Peak – Priority Controlled – two staged – with SWH duplication

Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS A 0.97 9.68 1.03		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	67.1 km/h 1811.1 veh-km/h 27.0 veh-h/h 69.0 km/h		67.1 km/h 2173.4 pers-km/h 32.4 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	1846 veh/h 1846 veh/h 1789 veh/h 0 veh/h 8.2 % 8.2 % 0.291		2216 pers/h 2216 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	0.59 veh-h/h 1.1 sec 23.4 sec 23.4 sec 0.5 sec 0.7 sec		0.70 pers-h/h 1.1 sec 23.4 sec
Ave. Queue Storage Ratio (Worst Lane) Fotal Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.09 142 veh/h 0.08 0.05 29.3	0.08 per km	171 pers/h 0.08 0.05 29.3
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1365.03 \$/h 209.2 L/h 11.5 L/100km 503.4 kg/h 0.033 kg/h 0.571 kg/h 2.230 kg/h	0.75 \$/km 115.5 mL/km 277.9 g/km 0.018 g/km 0.315 g/km 1.231 g/km	1365.03 \$/h

C2.2.2 PM Peak – Priority Controlled – two staged – with SWH duplication

Network Performance - Hourly Values			
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS A 0.96 9.61 1.04		
ravel Speed (Average) ravel Distance (Total) ravel Time (Total) Desired Speed (Program)	66.3 km/h 2027.0 veh-km/h 30.6 veh-h/h 68.7 km/h		66.3 km/h 2432.4 pers-km/h 36.7 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	2143 veh/h 2143 veh/h 2002 veh/h 0 veh/h 6.3 % 6.3 % 0.290		2572 pers/h 2572 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	0.75 veh-h/h 1.3 sec 12.8 sec 12.8 sec 0.6 sec 0.6 sec		0.90 pers-h/h 1.3 sec 12.8 sec
Ave. Queue Storage Ratio (Worst Lane) Fotal Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.19 273 veh/h 0.13 0.09 33.3	0.13 per km	328 pers/h 0.13 0.09 33.3
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1490.59 \$/h 212.3 L/h 10.5 L/100km 508.5 kg/h 0.035 kg/h 0.617 kg/h 1.994 kg/h	0.74 \$/km 104.7 mL/km 250.8 g/km 0.017 g/km 0.304 g/km 0.984 g/km	1490.59 \$/h

C2.2.3 AM Peak – Priority Controlled – two staged – without SWH duplication

Network Performance - Hourly Values			
Performance Measure Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	Vehicles LOS A 0.97 9.62 1.04	Per Unit Distance	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	66.7 km/h 1811.0 veh-km/h 27.1 veh-h/h 69.0 km/h		66.7 km/h 2173.2 pers-km/h 32.6 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	1846 veh/h 1846 veh/h 1789 veh/h 0 veh/h 8.2 % 8.2 % 0.581		2216 pers/h 2216 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	0.66 veh-h/h 1.3 sec 27.0 sec 27.0 sec 0.5 sec 0.8 sec		0.79 pers-h/h 1.3 sec 27.0 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.12 140 veh/h 0.08 0.04 29.3	0.08 per km	168 pers/h 0.08 0.04 29.3
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1369.66 \$/h 209.1 L/h 11.5 L/100km 503.3 kg/h 0.033 kg/h 0.567 kg/h 2.231 kg/h	0.76 \$/km 115.5 mL/km 277.9 g/km 0.018 g/km 0.313 g/km 1.232 g/km	1369.66 \$/h

C2.2.4 PM Peak – Priority Controlled – two staged – without SWH duplication

Network Performance - Hourly Values			
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS A 0.96 9.60 1.04		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	66.2 km/h 2026.6 veh-km/h 30.6 veh-h/h 68.7 km/h		66.2 km/h 2432.0 pers-km/h 36.7 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	2143 veh/h 2143 veh/h 2002 veh/h 0 veh/h 6.3 % 6.3 % 0.581		2572 pers/h 2572 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	0.68 veh-h/h 1.1 sec 12.4 sec 12.4 sec 0.7 sec 0.5 sec		0.81 pers-h/h 1.1 sec 12.4 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.09 252 veh/h 0.12 0.07 32.5	0.12 per km	303 pers/h 0.12 0.07 32.5
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1490.29 \$/h 211.9 L/h 10.5 L/100km 507.7 kg/h 0.035 kg/h 0.611 kg/h 1.993 kg/h	0.74 \$/km 104.6 mL/km 250.5 g/km 0.017 g/km 0.301 g/km 0.983 g/km	1490.29 \$/h

C2.3 SWH/ Eleventh Road

C2.3.1 AM Peak – Priority Controlled – two staged – with SWH duplication

Network Performance - Hourly Values			
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS)	LOSA		
Speed Efficiency Travel Time Index	0.94 9.35		
raver rime index Congestion Coefficient	9.35 1.06		
Jongestion Coefficient	1.00		
ravel Speed (Average)	74.5 km/h		74.5 km/h
ravel Distance (Total)	2022.1 veh-km/h		2426.5 pers-km/h
ravel Time (Total)	27.1 veh-h/h		32.6 pers-h/h
esired Speed (Program)	79.1 km/h		
Demand Flows (Total for all Sites)	2125 veh/h		2550 pers/h
rrival Flows (Total for all Sites)	2125 veh/h		2550 pers/h
Demand Flows (Entry Total)	1994 veh/h		poro
/lidblock Inflows (Total)	0 veh/h		
/lidblock Outflows (Total)	0 veh/h		
Percent Heavy Vehicles (Demand)	8.0 %		
Percent Heavy Vehicles (Arrival)	8.0 %		
Degree of Saturation	0.317		
Control Delay (Total)	1.07 veh-h/h		1.29 pers-h/h
Control Delay (Average)	1.8 sec		1.8 sec
control Delay (Worst Lane)	20.7 sec		
Control Delay (Worst Movement)	20.7 sec		20.7 sec
Geometric Delay (Average)	0.9 sec		
Stop-Line Delay (Average)	0.9 sec		
ve. Queue Storage Ratio (Worst Lane)	0.15		
otal Effective Stops	311 veh/h		374 pers/h
ffective Stop Rate	0.15	0.15 per km	0.15
Proportion Queued	0.09		0.09
Performance Index	30.5		30.5
Cost (Total)	1577.31 \$/h	0.78 \$/km	1577.31 \$/h
uel Consumption (Total)	301.5 L/h	149.1 mL/km	
uel Economy	14.9 L/100km		
Carbon Dioxide (Total)	731.4 kg/h	361.7 g/km	
lydrocarbons (Total)	0.050 kg/h	0.025 g/km	
Carbon Monoxide (Total)	0.901 kg/h	0.446 g/km	
IOx (Total)	3.647 kg/h	1.803 g/km	

C2.3.2 PM Peak – Priority Controlled – two staged – with SWH duplication

Network Performance - Hourly Values			
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS A 0.95 9.44 1.05		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	74.9 km/h 2213.2 veh-km/h 29.5 veh-h/h 78.9 km/h		74.9 km/h 2655.8 pers-km/h 35.5 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	2360 veh/h 2360 veh/h 2183 veh/h 0 veh/h 5.0 % 5.0 % 0.296		2832 pers/h 2832 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	1.11 veh-h/h 1.7 sec 12.3 sec 12.3 sec 1.0 sec 0.7 sec		1.33 pers-h/h 1.7 sec 12.3 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.28 390 veh/h 0.17 0.10 32.9	0.18 per km	469 pers/h 0.17 0.10 32.9
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1485.00 \$/h 225.1 L/h 10.2 L/100km 543.8 kg/h 0.041 kg/h 0.839 kg/h 2.209 kg/h	0.67 \$/km 101.7 mL/km 245.7 g/km 0.019 g/km 0.379 g/km 0.998 g/km	1485.00 \$/h

C2.3.3 AM Peak - Priority Controlled - two staged - without SWH duplication

Network Performance - Hourly Values Performance Measure	Vehicles	Per Unit Distance	Persons
Vertormance Measure Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS A 0.94 9.39 1.06	rer unit distance	Persons
Fravel Speed (Average) Fravel Distance (Total) Fravel Time (Total) Desired Speed (Program)	74.8 km/h 2021.6 veh-km/h 27.0 veh-h/h 79.1 km/h		74.8 km/h 2426.0 pers-km/h 32.4 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	2125 veh/h 2125 veh/h 1994 veh/h 0 veh/h 8.0 % 8.0 % 0.633		2550 pers/h 2550 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	0.91 veh-h/h 1.5 sec 22.2 sec 22.2 sec 0.9 sec 0.6 sec		1.09 pers-h/h 1.5 sec 22.2 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.08 297 veh/h 0.14 0.07 29.3	0.15 per km	356 pers/h 0.14 0.07 29.3
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1572.91 \$/h 301.0 L/h 14.9 L/100km 730.3 kg/h 0.050 kg/h 0.893 kg/h 3.648 kg/h	0.78 \$/km 148.9 mL/km 361.3 g/km 0.025 g/km 0.441 g/km 1.804 g/km	1572.91 \$/h

C2.3.4 PM Peak – Priority Controlled – two staged – without SWH duplication

Network Performance - Hourly Values			
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS A 0.95 9.47 1.05		
_			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	75.2 km/h 2212.6 veh-km/h 29.4 veh-h/h 78.9 km/h		75.2 km/h 2655.1 pers-km/h 35.3 pers-h/h
Demand Flows (Total for all Sites)	2360 veh/h		2832 pers/h
Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	2360 veh/h 2183 veh/h 0 veh/h 5.0 % 5.0 % 0.593		2832 pers/h
Control Delay (Total)	0.94 veh-h/h		1.13 pers-h/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane)	1.4 sec 11.7 sec		1.4 sec
Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	11.7 sec 1.0 sec 0.5 sec		11.7 sec
Ave. Queue Storage Ratio (Worst Lane)	0.15		
Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	365 veh/h 0.15 0.08 31.9	0.16 per km	438 pers/h 0.15 0.08 31.9
Coot (Total)	1400 70 ¢/b	0.67 \$/km	1480.70 \$/h
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total)	1480.70 \$/h 224.7 L/h 10.2 L/100km 542.8 kg/h	101.6 mL/km 245.3 g/km	1460.70 \$/11
Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	0.041 kg/h 0.831 kg/h 2.209 kg/h	0.019 g/km 0.375 g/km 0.998 g/km	

C3 Armadale Road Network

C3.1 Do Nothing (LX at grade)

C3.1.1 AM Peak – Network Performance

Network Performance - Hourly Values				
Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS D 0.52 4.71 1.91			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	32.8 km/h 3896.0 veh-km/h 118.9 veh-h/h 62.5 km/h		1.3 km/h 5.9 ped-km/h 4.5 ped-h/h	31.8 km/h 4681.1 pers-km/h 147.2 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	12119 veh/h 12119 veh/h 3533 veh/h 109 veh/h -171 veh/h 6.5 % 6.5 % 1.106		69 ped/h 69 ped/h	14612 pers/h 14612 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	56.45 veh-h/h 16.8 sec 135.5 sec 135.5 sec 1.4 sec 15.4 sec		3.10 ped-h/h 160.6 sec 197.4 sec	70.84 pers-h/h 17.5 sec 197.4 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	1.00 5506 veh/h 0.45 0.37 446.9	1.41 per km	68 ped/h 0.99 0.99 4.8	6676 pers/h 0.46 0.38 451.8
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	5516.27 \$/h 701.2 L/h 18.0 L/100km 1668.4 kg/h 0.134 kg/h 1.627 kg/h 6.294 kg/h	1.42 \$/km 180.0 mL/km 428.2 g/km 0.034 g/km 0.418 g/km 1.616 g/km	123.27 \$/h	5639.54 \$/h

C3.1.2 PM Peak – Network Performance

Network Performance - Hourly Values				
Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS E 0.42 3.57 2.37			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	26.2 km/h 4487.6 veh-km/h 171.5 veh-h/h 62.1 km/h		1.3 km/h 5.9 ped-km/h 4.5 ped-h/h	25.6 km/h 5391.0 pers-km/h 210.3 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	14126 veh/h 13948 veh/h 4119 veh/h 148 veh/h -219 veh/h 5.5 % 5.6 % 1.265		69 ped/h 69 ped/h	17021 pers/h 16806 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	98.59 veh-h/h 25.4 sec 378.5 sec 378.5 sec 1.4 sec 24.0 sec		3.12 ped-h/h 161.7 sec 197.4 sec	121.43 pers-h/h 26.0 sec 378.5 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	1.00 7825 veh/h 0.56 0.40 637.0	1.74 per km	69 ped/h 0.99 0.99 4.9	9459 pers/h 0.56 0.41 641.9
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	7597.69 \$/h 851.8 L/h 19.0 L/100km 2022.6 kg/h 0.167 kg/h 1.938 kg/h 7.013 kg/h	1.69 \$/km 189.8 mL/km 450.7 g/km 0.037 g/km 0.432 g/km 1.563 g/km	123.85 \$/h	7721.53 \$/h

C3.2 Do Nothing (Grade separated)

C3.2.1 AM Peak – Network Performance

Network Performance - Hourly Values Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS D 0.56 5.10 1.79	rei unit Distance	reuestrians	reisons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	35.0 km/h 3927.0 veh-km/h 112.3 veh-h/h 62.5 km/h		3.5 km/h 3.8 ped-km/h 1.1 ped-h/h	34.7 km/h 4716.2 pers-km/h 135.8 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	9915 veh/h 9915 veh/h 3533 veh/h 103 veh/h -165 veh/h 6.4 % 1.106		17 ped/h 17 ped/h	11915 pers/h 11915 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	49.39 veh-h/h 17.9 sec 135.5 sec 135.5 sec 1.7 sec 16.2 sec		0.21 ped-h/h 45.4 sec 45.6 sec	59.48 pers-h/h 18.0 sec 135.5 sec
Ave. Queue Storage Ratio (Worst Lane) Fotal Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.52 4875 veh/h 0.49 0.39 326.8	1.24 per km	16 ped/h 0.96 0.96 1.2	5866 pers/h 0.49 0.39 328.0
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	5155.58 \$/h 638.4 L/h 16.3 L/100km 1519.5 kg/h 0.122 kg/h 1.500 kg/h 5.582 kg/h	1.31 \$/km 162.6 mL/km 386.9 g/km 0.031 g/km 0.382 g/km 1.421 g/km	30.15 \$/h	5185.73 \$ /h

C3.2.2 PM Peak – Network Performance

Network Performance - Hourly Values				
Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS)	LOS E			
Speed Efficiency	0.47			
Travel Time Index	4.10			
Congestion Coefficient	2.13			
Travel Speed (Average)	29.2 km/h		3.4 km/h	29.0 km/h
Travel Distance (Total)	4545.9 veh-km/h		3.8 ped-km/h	5458.8 pers-km/h
Fravel Time (Total)	155.8 veh-h/h		1.1 ped-h/h	188.0 pers-h/h
Desired Speed (Program)	62.2 km/h			•
Demand Flows (Total for all Sites)	11576 veh/h		17 ped/h	13908 pers/h
Arrival Flows (Total for all Sites)	11505 veh/h		17 ped/h	13823 pers/h
Demand Flows (Entry Total) Midblock Inflows (Total)	4119 veh/h 125 veh/h			
Midblock Outflows (Total)	-195 veh/h			
Percent Heavy Vehicles (Demand)	5.4 %			
Percent Heavy Vehicles (Arrival)	5.4 %			
Degree of Saturation	1.298			
Control Delay (Total)	82.17 veh-h/h		0.23 ped-h/h	98.84 pers-h/h
Control Delay (Average)	25.7 sec		49.9 sec	25.7 sec
Control Delay (Worst Lane) Control Delay (Worst Movement)	463.0 sec 463.0 sec		50.1 sec	463.0 sec
Geometric Delay (Average)	1.8 sec		30.1 360	400.0 360
Stop-Line Delay (Average)	23.9 sec			
, (
Ave. Queue Storage Ratio (Worst Lane)	0.49			
Total Effective Stops	6874 veh/h		16 ped/h	8265 pers/h
Effective Stop Rate	0.60	1.51 per km	0.96	0.60
Proportion Queued Performance Index	0.42 482.7		0.96 1.2	0.43 483.9
CHOITHANGE HINEX	402.1		1.2	+00.3
Cost (Total)	6893.81 \$/h	1.52 \$/km	30.73 \$/h	6924.53 \$/h
Fuel Consumption (Total)	770.8 L/h	169.6 mL/km		
Fuel Economy	17.0 L/100km			
Carbon Dioxide (Total)	1831.1 kg/h	402.8 g/km		
Hydrocarbons (Total)	0.151 kg/h	0.033 g/km		
Carbon Monoxide (Total)	1.784 kg/h	0.393 g/km		
NOx (Total)	6.225 kg/h	1.369 g/km		

C3.3 Do Something (Grade separated)

C3.3.1 AM Peak - Network Performance - Fully Signalised

Network Performance - Hourly Values				
Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency	LOS D 0.59			
Fravel Time Index	5.41			
Congestion Coefficient	1.70			
Fravel Speed (Average)	36.7 km/h		3.7 km/h	36.5 km/h
ravel Distance (Total)	3916.3 veh-km/h		3.8 ped-km/h	4703.4 pers-km/h
ravel Time (Total)	106.6 veh-h/h		1.0 ped-h/h	129.0 pers-h/h
Desired Speed (Program)	62.6 km/h			
Demand Flows (Total for all Sites)	9524 veh/h		17 ped/h	11446 pers/h
Arrival Flows (Total for all Sites)	9524 veh/h		17 ped/h	11446 pers/h
Demand Flows (Entry Total) Midblock Inflows (Total)	3533 veh/h 103 veh/h			
Midblock Outflows (Total)	-165 veh/h			
Percent Heavy Vehicles (Demand)	6.5 %			
Percent Heavy Vehicles (Arrival)	6.5 %			
Degree of Saturation	0.831			
Control Delay (Total)	43.46 veh-h/h		0.14 ped-h/h	52.30 pers-h/h
Control Delay (Average)	16.4 sec		31.0 sec	16.4 sec
Control Delay (Worst Lane)	44.3 sec		24.4	44.0
Control Delay (Worst Movement)	44.3 sec 1.7 sec		31.1 sec	44.3 sec
Geometric Delay (Average) Stop-Line Delay (Average)	1.7 sec 14.8 sec			
, ,, ,,				
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops	0.33 5738 veh/h		16 ped/h	6901 pers/h
Effective Stop Rate	0.60	1.47 per km	0.94	0.60
Proportion Queued	0.63	1.47 por Mill	0.94	0.63
Performance Index	366.5		1.1	367.6
Cost (Total)	5307.76 \$/h	1.36 \$/km	28.28 \$/h	5336.03 \$/h
uel Consúmption (Total)	789.6 L/h	201.6 mL/km	_0.20 0	
uel Economy	20.2 L/100km			
Carbon Dioxide (Total)	1878.8 kg/h	479.7 g/km		
lydrocarbons (Total)	0.145 kg/h 1.745 kg/h	0.037 g/km 0.445 g/km		
`arbon Monovido (Total)				
Carbon Monoxide (Total) NOx (Total)	8.093 kg/h	2.066 g/km		

C3.3.2 PM Peak – Network Performance – Fully Signalised

Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS D 0.56 5.09 1.79	Ter one distance	r edestrians	i ersons
Songestion Coemcion	1.75			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	34.7 km/h 4563.0 veh-km/h 131.5 veh-h/h 62.2 km/h		3.6 km/h 3.8 ped-km/h 1.0 ped-h/h	34.5 km/h 5479.4 pers-km/h 158.9 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	11099 veh/h 11099 veh/h 4119 veh/h 125 veh/h -195 veh/h 5.6 % 0.920		17 ped/h 17 ped/h	13336 pers/h 13336 pers/h
Control Delay (Total)	57.56 veh-h/h		0.17 ped-h/h	69.24 pers-h/h
Control Delay (Average)	18.7 sec		35.9 sec	18.7 sec
Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	52.8 sec 52.8 sec 1.7 sec 17.0 sec		36.1 sec	52.8 sec
Ave. Queue Storage Ratio (Worst Lane)	0.43			
Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	6906 veh/h 0.62 0.64 508.7	1.51 per km	16 ped/h 0.95 0.95 1.1	8303 pers/h 0.62 0.64 509.8
Cost (Total)	6421.82 \$/h	1.41 \$/km	28.92 \$/h	6450.75 \$/h
Fuel Čonsúmption (Total) Fuel Economy Carbon Dioxide (Total)	918.1 L/h 20.1 L/100km 2181.1 kg/h	201.2 mL/km 478.0 g/km	۱۱۱ ۵۵.۵۷	0400.70 pm
Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	0.170 kg/h 2.018 kg/h 9.014 kg/h	0.037 g/km 0.442 g/km 1.975 g/km		

C3.3.3 AM Peak – Network Performance – Roundabouts Only

Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS D 0.63 5.84 1.60			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	39.3 km/h 4137.6 veh-km/h 105.2 veh-h/h 62.9 km/h		3.5 km/h 3.8 ped-km/h 1.1 ped-h/h	39.0 km/h 4969.0 pers-km/h 127.3 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	9524 veh/h 9524 veh/h 3533 veh/h 103 veh/h -165 veh/h 6.5 % 6.5 % 0.683		17 ped/h 17 ped/h	11446 pers/h 11446 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	37.15 veh-h/h 14.0 sec 59.5 sec 59.5 sec 4.3 sec 9.8 sec		0.21 ped-h/h 45.4 sec 45.6 sec	44.79 pers-h/h 14.1 sec 59.5 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.34 5577 veh/h 0.59 0.50 296.9	1.35 per km	16 ped/h 0.96 0.96 1.2	6709 pers/h 0.59 0.50 298.0
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	5342.14 \$/h 825.8 L/h 20.0 L/100km 1964.2 kg/h 0.156 kg/h 1.834 kg/h 7.729 kg/h	1.29 \$/km 199.6 mL/km 474.7 g/km 0.038 g/km 0.443 g/km 1.868 g/km	30.15 \$/h	5372.28 \$/h

C3.3.4 PM Peak – Network Performance – Roundabouts Only

Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS D 0.61 5.65 1.64			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	38.0 km/h 4811.8 veh-km/h 126.7 veh-h/h 62.4 km/h		3.6 km/h 3.8 ped-km/h 1.0 ped-h/h	37.8 km/h 5778.0 pers-km/h 153.0 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	11099 veh/h 11099 veh/h 4119 veh/h 125 veh/h -195 veh/h 5.6 % 0.920		17 ped/h 17 ped/h	13336 pers/h 13336 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	46.93 veh-h/h 15.2 sec 51.3 sec 51.3 sec 4.2 sec 11.1 sec		0.17 ped-h/h 35.9 sec 36.1 sec	56.49 pers-h/h 15.2 sec 51.3 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.41 7161 veh/h 0.65 0.56 381.0	1.49 per km	16 ped/h 0.95 0.95 1.1	8609 pers/h 0.65 0.56 382.1
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	6394.07 \$/h 977.4 L/h 20.3 L/100km 2321.3 kg/h 0.184 kg/h 2.147 kg/h 8.959 kg/h	1.33 \$/km 203.1 mL/km 482.4 g/km 0.038 g/km 0.446 g/km 1.862 g/km	28.92 \$/h	6423.00 \$/h

C3.3.5 AM Peak – Network Performance – Partial treatment

Network Performance - Hourly Values	Mahialaa	Day Hait Distance	Badastiana	B
Performance Measure Network Level of Service (LOS) Speed Efficiency Fravel Time Index Congestion Coefficient	Vehicles LOS D 0.61 5.70 1.63	Per Unit Distance	Pedestrians	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	38.5 km/h 4072.0 veh-km/h 105.7 veh-h/h 62.8 km/h		3.5 km/h 3.8 ped-km/h 1.1 ped-h/h	38.2 km/h 4890.2 pers-km/h 128.0 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	9524 veh/h 9524 veh/h 3533 veh/h 103 veh/h -165 veh/h 6.5 % 6.5 % 0.683		17 ped/h 17 ped/h	11446 pers/h 11446 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	39.50 veh-h/h 14.9 sec 59.5 sec 59.5 sec 3.5 sec 11.5 sec		0.21 ped-h/h 45.4 sec 45.6 sec	47.61 pers-h/h 15.0 sec 59.5 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.34 5713 veh/h 0.60 0.54 323.7	1.40 per km	16 ped/h 0.96 0.96 1.2	6872 pers/h 0.60 0.54 324.9
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	5366.29 \$/h 828.7 L/h 20.4 L/100km 1971.4 kg/h 0.156 kg/h 1.836 kg/h 7.969 kg/h	1.32 \$/km 203.5 mL/km 484.1 g/km 0.038 g/km 0.451 g/km 1.957 g/km	30.15 \$/h	5396.44 \$/h

C3.3.6 PM Peak – Network Performance – Partial treatment

Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Fravel Time Index Congestion Coefficient	LOS D 0.60 5.51 1.68			
Fravel Speed (Average) Fravel Distance (Total) Fravel Time (Total) Desired Speed (Program)	37.2 km/h 4742.4 veh-km/h 127.6 veh-h/h 62.4 km/h		3.6 km/h 3.8 ped-km/h 1.0 ped-h/h	36.9 km/h 5694.7 pers-km/h 154.2 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	11099 veh/h 11099 veh/h 4119 veh/h 125 veh/h -195 veh/h 5.6 % 0.920		17 ped/h 17 ped/h	13336 pers/h 13336 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	49.83 veh-h/h 16.2 sec 51.3 sec 51.3 sec 3.5 sec 12.7 sec		0.17 ped-h/h 35.9 sec 36.1 sec	59.97 pers-h/h 16.2 sec 51.3 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.41 7248 veh/h 0.65 0.59 413.2	1.53 per km	16 ped/h 0.95 0.95 1.1	8714 pers/h 0.65 0.59 414.4
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	6425.75 \$/h 977.8 L/h 20.6 L/100km 2322.2 kg/h 0.183 kg/h 2.144 kg/h 9.163 kg/h	1.35 \$/km 206.2 mL/km 489.7 g/km 0.039 g/km 0.452 g/km 1.932 g/km	28.92 \$/h	6454.67 \$/h

C4 Church Avenue Road Network

C4.1 Do Nothing (LX at grade)

C4.1.1 AM Peak – Network performance

Network Performance - Hourly Values					
Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons	
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS B 0.82 7.95 1.23				
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	39.4 km/h 1216.1 veh-km/h 30.9 veh-h/h 48.2 km/h		0.1 km/h 1.8 ped-km/h 13.9 ped-h/h	28.7 km/h 1461.1 pers-km/h 50.9 pers-h/h	
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	3842 veh/h 3842 veh/h 1701 veh/h 6 veh/h -100 veh/h 3.9 % 3.9 % 0.697		53 ped/h 53 ped/h	4663 pers/h 4663 pers/h	
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	5.47 veh-h/h 5.1 sec 8.0 sec 11.9 sec 3.0 sec 2.1 sec		13.44 ped-h/h 919.0 sec 919.0 sec	19.99 pers-h/h 15.4 sec 919.0 sec	
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	1.00 1822 veh/h 0.47 0.36 133.7	1.50 per km	53 ped/h 1.00 1.00 14.1	2240 pers/h 0.48 0.36 147.8	
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1379.97 \$/h 158.4 L/h 13.0 L/100km 375.7 kg/h 0.029 kg/h 0.289 kg/h 0.965 kg/h	1.13 \$/km 130.3 mL/km 308.9 g/km 0.024 g/km 0.238 g/km 0.794 g/km	382.43 \$/h	1762.41 \$/h	

C4.1.2 PM Peak – Network performance

N-4				
Network Performance - Hourly Values Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS B 0.81 7.93 1.23	rei unit Distance	reuesulalis	reisulis
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	39.1 km/h 1340.6 veh-km/h 34.3 veh-h/h 48.0 km/h		0.1 km/h 1.8 ped-km/h 13.9 ped-h/h	29.3 km/h 1610.6 pers-km/h 55.0 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	4212 veh/h 4212 veh/h 1939 veh/h 56 veh/h -83 veh/h 3.8 % 0.507		53 ped/h 53 ped/h	5107 pers/h 5107 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	6.06 veh-h/h 5.2 sec 8.5 sec 10.4 sec 3.0 sec 2.2 sec		13.44 ped-h/h 919.0 sec 919.0 sec	20.71 pers-h/h 14.6 sec 919.0 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	1.00 2110 veh/h 0.50 0.41 126.0	1.57 per km	53 ped/h 1.00 1.00 14.1	2585 pers/h 0.51 0.42 140.1
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1543.80 \$/h 181.1 L/h 13.5 L/100km 430.0 kg/h 0.033 kg/h 0.331 kg/h 1.166 kg/h	1.15 \$/km 135.1 mL/km 320.8 g/km 0.024 g/km 0.247 g/km 0.870 g/km	382.43 \$/h	1926.24 \$/h

C4.2 Do Nothing (grade separated)

C4.2.1 AM Peak – Network performance

Network Performance - Hourly Values			
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS B 0.83 8.14 1.20		
oungoonen oodmaant			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	40.2 km/h 1228.4 veh-km/h 30.6 veh-h/h 48.3 km/h		40.2 km/h 1474.1 pers-km/h 36.7 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	2993 veh/h 2993 veh/h 1701 veh/h 6 veh/h -100 veh/h 3.9 % 3.9 % 0.368		3591 pers/h 3591 pers/h
Control Delay (Total)	4.78 veh-h/h		5.73 pers-h/h
Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	5.7 sec 7.9 sec 9.8 sec 4.2 sec 1.5 sec		5.7 sec 9.8 sec
Ave. Queue Storage Ratio (Worst Lane)	0.06		
Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	1714 veh/h 0.57 0.44 72.2	1.40 per km	2057 pers/h 0.57 0.44 72.2
Cost (Total)	1368.63 \$/h	1.11 \$/km	1368.63 \$/h
Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	158.1 L/h 12.9 L/100km 374.8 kg/h 0.029 kg/h 0.289 kg/h 0.985 kg/h	128.7 mL/km 305.1 g/km 0.023 g/km 0.235 g/km 0.802 g/km	

C4.2.2 PM Peak – Network performance

Network Performance - Hourly Values			
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS)	LOS B		
Speed Efficiency	0.82		
Travel Time Index Congestion Coefficient	8.05 1.21		
Congestion Coefficient	1.21		
Travel Speed (Average)	39.6 km/h		39.6 km/h
Travel Distance (Total)	1356.8 veh-km/h		1628.1 pers-km/h
Travel Time (Total)	34.3 veh-h/h		41.1 pers-h/h
Desired Speed (Program)	48.0 km/h		•
B 151 (T.16 110);)			4000 "
Demand Flows (Total for all Sites)	3360 veh/h		4032 pers/h
Arrival Flows (Total for all Sites)	3360 veh/h		4032 pers/h
Demand Flows (Entry Total) Midblock Inflows (Total)	1939 veh/h 37 veh/h		
Midblock Outflows (Total)	-64 veh/h		
Percent Heavy Vehicles (Demand)	3.9 %		
Percent Heavy Vehicles (Arrival)	3.9 %		
Degree of Saturation	0.479		
g · · · · · · · · · · · · · ·			
Control Delay (Total)	5.61 veh-h/h		6.73 pers-h/h
Control Delay (Average)	6.0 sec		6.0 sec
Control Delay (Worst Lane)	8.5 sec		40.4
Control Delay (Worst Movement)	10.4 sec		10.4 sec
Geometric Delay (Average)	4.0 sec		
Stop-Line Delay (Äverage)	2.0 sec		
Ave. Queue Storage Ratio (Worst Lane)	0.11		
Total Effective Stops	2036 veh/h		2443 pers/h
Effective Stop Rate	0.61	1.50 per km	0.61
Proportion Queued	0.50	·	0.50
Performance Index	86.0		86.0
Cost (Total)	1543.76 \$/h	1.14 \$/km	1543.76 \$/h
Fuel Consumption (Total)	181.6 L/h	133.9 mL/km	1545.70 9/11
Fuel Economy	13.4 L/100km	IJJ.J IIIL/KIII	
Carbon Dioxide (Total)	431.3 kg/h	317.9 g/km	
Hydrocarbons (Total)	0.033 kg/h	0.024 g/km	
Carbon Monoxide (Total)	0.333 kg/h	0.245 g/km	
		0.873 g/km	
NOx (Total)	1.185 kg/h	0.075 g/killi	

C5 Forrest Road Network

C5.1 Do Nothing (LX at grade)

C5.1.1 AM Peak – Network performance

erformance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
letwork Level of Service (LOS) speed Efficiency ravel Time Index congestion Coefficient	LOS B 0.86 8.39 1.17			
ravel Speed (Average) ravel Distance (Total) ravel Time (Total) Desired Speed (Program)	35.1 km/h 1010.2 veh-km/h 28.8 veh-h/h 41.1 km/h		0.6 km/h 1.9 ped-km/h 3.3 ped-h/h	32.1 km/h 1214.2 pers-km/h 37.8 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation	4059 veh/h 4059 veh/h 1369 veh/h 118 veh/h -44 veh/h 1.5 % 0.541		53 ped/h 53 ped/h	4923 pers/h 4923 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	4.46 veh-h/h 4.0 sec 8.9 sec 10.9 sec 1.5 sec 2.4 sec		2.89 ped-h/h 197.4 sec 197.4 sec	8.23 pers-h/h 6.0 sec 197.4 sec
Ave. Queue Storage Ratio (Worst Lane) Fotal Effective Stops Effective Stop Rate Proportion Queued Performance Index	1.00 1412 veh/h 0.35 0.25 91.9	1.40 per km	52 ped/h 0.99 0.99 3.6	1747 pers/h 0.35 0.26 95.5
Cost (Total) Tuel Consumption (Total) Tuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1179.74 \$/h 101.0 L/h 10.0 L/100km 238.3 kg/h 0.018 kg/h 0.139 kg/h 0.238 kg/h	1.17 \$/km 100.0 mL/km 235.9 g/km 0.018 g/km 0.137 g/km 0.235 g/km	91.84 \$/h	1271.59 \$/h

C5.1.2 PM Peak – Network performance

Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Fravel Time Index Congestion Coefficient	LOS B 0.85 8.33 1.18			
ravel Speed (Average) ravel Distance (Total) ravel Time (Total) Jesired Speed (Program)	35.0 km/h 1044.6 veh-km/h 29.8 veh-h/h 41.2 km/h		0.6 km/h 1.9 ped-km/h 3.3 ped-h/h	32.1 km/h 1255.4 pers-km/h 39.1 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation	4378 veh/h 4378 veh/h 1389 veh/h 139 veh/h -15 veh/h 1.9 % 1.9 % 0.567		53 ped/h 53 ped/h	5306 pers/h 5306 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	4.75 veh-h/h 3.9 sec 9.5 sec 11.3 sec 1.5 sec 2.4 sec		2.89 ped-h/h 197.4 sec 197.4 sec	8.59 pers-h/h 5.8 sec 197.4 sec
Ave. Queue Storage Ratio (Worst Lane) Fotal Effective Stops Effective Stop Rate Proportion Queued Performance Index	1.00 1465 veh/h 0.33 0.24 105.5	1.40 per km	52 ped/h 0.99 0.99 3.6	1810 pers/h 0.34 0.25 109.1
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1230.93 \$/h 107.9 L/h 10.3 L/100km 255.0 kg/h 0.019 kg/h 0.151 kg/h 0.336 kg/h	1.18 \$/km 103.3 mL/km 244.1 g/km 0.018 g/km 0.145 g/km 0.321 g/km	91.84 \$ /h	1322.77 \$ /h

C5.2 Do Nothing (grade separated)

C5.2.1 AM Peak – Network performance

Vehicles	Per Unit Distance	Persons	
LOS A 0.91 9.00 1.10			
37.6 km/h 1021.3 veh-km/h 27.2 veh-h/h 41.3 km/h		37.6 km/h 1225.5 pers-km/h 32.6 pers-h/h	
3260 veh/h 3260 veh/h 1369 veh/h 118 veh/h -44 veh/h 1.4 % 0.541		3912 pers/h 3912 pers/h	
2.75 veh-h/h 3.0 sec 8.9 sec 10.8 sec 1.9 sec 1.1 sec		3.30 pers-h/h 3.0 sec 10.8 sec	
0.47 1229 veh/h 0.38 0.26 50.6	1.20 per km	1475 pers/h 0.38 0.26 50.6	
1117.79 \$/h 96.5 L/h 9.4 L/100km 227.6 kg/h 0.017 kg/h 0.134 kg/h 0.219 kg/h	1.09 \$/km 94.5 mL/km 222.8 g/km 0.017 g/km 0.132 g/km 0.214 g/km	1117.79 \$/h	
	0.91 9.00 1.10 37.6 km/h 1021.3 veh-km/h 27.2 veh-h/h 41.3 km/h 3260 veh/h 1369 veh/h 118 veh/h -44 veh/h 1.4 % 0.541 2.75 veh-h/h 3.0 sec 8.9 sec 10.8 sec 1.9 sec 1.1 sec 0.47 1229 veh/h 0.38 0.26 50.6 1117.79 \$/h 9.4 L/100km 227.6 kg/h 0.017 kg/h 0.134 kg/h	LOS A 0.91 9.00 1.10 37.6 km/h 1021.3 veh-km/h 27.2 veh-h/h 41.3 km/h 3260 veh/h 3260 veh/h 1369 veh/h 118 veh/h -44 veh/h 1.4 % 0.541 2.75 veh-h/h 3.0 sec 8.9 sec 10.8 sec 1.9 sec 1.1 sec 0.47 1229 veh/h 0.38 0.26 50.6 1117.79 \$/h 9.45 L/h 94.5 mL/km 9.41 L/100km 227.6 kg/h 0.017 kg/h 0.132 g/km	LOS A 0.91 9.00 1.10 37.6 km/h 1021.3 veh-km/h 27.2 veh-h/h 41.3 km/h 32.6 pers-h/h 41.3 km/h 32.6 pers-h/h 32.6 pers-h/h 3912 pers/h 118 veh/h -44 veh/h 1.4 % 1.4 % 0.541 2.75 veh-h/h 3.0 sec 8.9 sec 10.8 sec 1.9 sec 1.1 sec 0.47 1229 veh/h 0.38 0.26 50.6 1117.79 \$/h 9.38 0.26 50.6 1117.79 \$/h 94.5 mL/km 94. L/100km 227.6 kg/h 94.5 mL/km 94. L/100km 227.6 kg/h 0.017 kg/h 0.132 g/km

C5.2.2 PM Peak – Network performance

Network Performance - Hourly Values				
Performance Measure	Vehicles	Per Unit Distance	Persons	
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS A 0.91 8.98 1.10			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	37.6 km/h 1056.8 veh-km/h 28.1 veh-h/h 41.4 km/h		37.6 km/h 1268.1 pers-km/h 33.7 pers-h/h	
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	3481 veh/h 3481 veh/h 1389 veh/h 139 veh/h -15 veh/h 1.9 % 0.558		4177 pers/h 4177 pers/h	
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	2.85 veh-h/h 2.9 sec 9.5 sec 11.3 sec 1.9 sec 1.0 sec		3.42 pers-h/h 2.9 sec 11.3 sec	
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.52 1263 veh/h 0.36 0.24 53.5	1.19 per km	1515 pers/h 0.36 0.24 53.5	
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1164.73 \$/h 104.2 L/h 9.9 L/100km 246.4 kg/h 0.018 kg/h 0.149 kg/h 0.319 kg/h	1.10 \$/km 98.6 mL/km 233.2 g/km 0.017 g/km 0.141 g/km 0.302 g/km	1164.73 \$/h	

Appendix D

SIDRA Modelling Results (2036)

D1 Individual sites – Do Nothing

D1.1 SWH/ William St/ Bedfordale Hill Rd

D1.1.1 AM Peak

Vehic	le Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT VO [Total veh/h	DLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highw	ay South											
3	L1	254	3.8	267	3.8	* 0.951	65.4	LOS E	44.9	371.0	1.00	1.26	1.39	26.5
4	T1	1159	9.8	1220	9.8	0.951	59.2	LOS E	47.9	410.1	1.00	1.29	1.38	30.2
5	R2	33	10.0	35	10.0	* 0.104	20.9	LOS C	0.9	7.7	0.65	0.67	0.65	38.2
Approa	ach	1446	8.8	1522	8.8	0.951	59.4	LOS E	47.9	410.1	0.99	1.27	1.37	29.7
East: E	Bedfordale	Hill Road E	ast											
6	L2	30	0.0	32	0.0	0.914	65.4	LOS E	10.3	76.0	1.00	1.10	1.54	24.8
6a	R1	143	0.0	151	0.0	* 0.914	63.7	LOS E	10.3	76.0	1.00	1.10	1.54	22.4
7	R2	118	6.4	124	6.4	0.677	53.5	LOS D	6.1	47.8	1.00	0.84	1.10	26.6
Approa	ach	291	2.6	306	2.6	0.914	59.8	LOS E	10.3	76.0	1.00	1.00	1.36	24.3
North:	South We	stern Highw	ay North											
8	L2	39	13.8	41	13.8	0.361	23.8	LOS C	8.3	70.8	0.68	0.61	0.68	38.6
9	T1	524	10.7	552	10.7	0.361	16.6	LOS B	8.9	76.2	0.66	0.58	0.66	46.9
10	R3	41	0.0	43	0.0	* 0.324	32.4	LOS C	1.2	8.8	0.98	0.73	0.98	35.5
Approa	ach	604	10.2	636	10.2	0.361	18.1	LOS B	8.9	76.2	0.68	0.59	0.68	45.5
NorthV	Vest: Willia	am Street No	orth-West											
11	L3	94	1.8	99	1.8	0.535	36.4	LOS D	6.4	48.3	0.95	0.84	0.95	34.2
1	L1	65	2.6	68	2.6	0.535	34.3	LOS C	6.4	48.3	0.95	0.84	0.95	29.3
2	R1	197	5.2	207	5.2	* 0.941	69.7	LOS E	12.5	97.0	1.00	1.16	1.62	24.9
Approa	ach	356	3.8	375	3.8	0.941	54.5	LOS D	12.5	97.0	0.98	1.02	1.32	27.6
All Veh	nicles	2697	7.8	2839	7.8	0.951	49.6	LOS D	47.9	410.1	0.92	1.05	1.21	31.4

D1.1.2 PM Peak

Mov	Turn	INPUT VO		DEMAND		Deg.	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	Aver
D		[Total veh/h	HV] %	[Total veh/h	HV] %	Satn v/c	Delay sec	Service	[Veh. veh	Dist] m	Que	Stop Rate	Cycles	Spee km/l
South:	South We	estern Highw	ay South											
3	L1	184	0.9	194	0.9	* 0.820	41.6	LOS D	26.1	208.3	0.96	1.03	1.05	33.0
4	T1	969	8.5	1020	8.5	* 0.820	35.3	LOS D	27.2	225.6	0.95	1.02	1.03	37.7
5	R2	21	7.7	22	7.7	0.105	25.1	LOS C	0.7	5.2	0.77	0.68	0.77	36.5
Approa	ach	1174	7.3	1236	7.3	0.820	36.1	LOS D	27.2	225.6	0.95	1.02	1.03	36.9
East: E	Bedfordale	Hill Road E	ast											
6	L2	45	11.1	47	11.1	2.054	987.5	LOS F	38.5	304.3	1.00	2.59	5.86	2.7
6a	R1	93	5.4	98	5.4	* 2.054	985.4	LOS F	38.5	304.3	1.00	2.59	5.86	2.4
7	R2	48	10.5	51	10.5	0.418	55.9	LOS E	2.5	20.4	0.99	0.75	0.99	25.7
Approa	ach	186	8.1	196	8.1	2.054	746.0	LOS F	38.5	304.3	1.00	2.11	4.61	3.3
North:	South We	stern Highw	ay North											
8	L2	41	0.0	43	0.0	0.591	28.9	LOS C	15.5	128.2	0.80	0.72	0.80	37.9
9	T1	793	8.1	835	8.1	0.591	21.8	LOS C	15.5	128.2	0.79	0.70	0.79	44.0
10	R3	44	9.4	46	9.4	* 0.329	31.4	LOS C	1.4	11.6	0.93	0.74	0.93	35.8
Approa	ach	878	7.8	924	7.8	0.591	22.6	LOS C	15.5	129.5	0.79	0.70	0.79	43.3
NorthV	Vest: Willia	am Street No	orth-West											
11	L3	81	4.3	85	4.3	0.585	40.0	LOS D	7.9	59.7	0.94	0.91	0.94	32.8
1	L1	136	2.5	143	2.5	0.585	37.8	LOS D	7.9	59.7	0.94	0.91	0.94	28.3
2	R1	436	3.1	459	3.1	* 1.318	339.8	LOS F	71.6	543.5	1.00	2.23	3.47	7.9
Approa	ach	653	3.1	687	3.1	1.318	239.7	LOS F	71.6	543.5	0.98	1.79	2.63	10.2

D1.2 SWH/ Dickens Place

D1.2.1 AM Peak

Vehicl	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highv	vay South											
1	L2	21	7.7	22	7.7	0.875	7.6	LOS A	0.0	0.0	0.00	0.01	0.00	63.1
2	T1	1470	7.0	1547	7.0	0.875	1.3	LOS A	0.0	0.0	0.00	0.01	0.00	66.6
Approa	ich	1491	7.0	1569	7.0	0.875	1.4	NA	0.0	0.0	0.00	0.01	0.00	66.6
North:	South We	stern Highw	ay North											
8	T1	747	7.8	786	7.8	4.348	3081.7	LOS F	526.4	4367.4	1.00	0.12	5.31	1.1
9	R2	62	22.5	65	22.5	4.348	3095.0	LOS F	526.4	4367.4	1.00	0.12	5.31	1.1
Approa	ich	809	8.9	852	8.9	4.348	3082.7	NA	526.4	4367.4	1.00	0.12	5.31	1.1
West: [Dickens F	lace West												
10	L2	83	13.8	87	13.8	4.599	3334.0	LOS F	61.0	530.0	1.00	2.53	6.46	1.0
12	R2	14	40.0	15	40.0	4.599	3411.3	LOS F	61.0	530.0	1.00	2.53	6.46	1.0
Approa	ich	97	17.6	102	17.6	4.599	3345.2	LOS F	61.0	530.0	1.00	2.53	6.46	1.0
All Veh	icles	2397	8.1	2523	8.1	4.599	1176.7	NA	526.4	4367.4	0.38	0.15	2.05	2.8

D1.2.2 PM Peak

Vehicl	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT VO [Total veh/h	DLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highw	ay South											
1 2	L2 T1	33 970	5.0 7.3	35 1021	5.0 7.3	0.593 0.593	6.7 0.3	LOS A LOS A	0.0	0.0	0.00	0.02 0.02	0.00	64.0 69.0
Approa	ch	1003	7.2	1056	7.2	0.593	0.5	NA	0.0	0.0	0.00	0.02	0.00	68.8
North: \$	South We	stern Highw	ay North											
8	T1	1353	4.6	1424	4.6	1.083	94.6	LOS F	100.7	797.3	1.00	0.10	5.88	24.1
9	R2	78	17.7	82	17.7	1.083	150.2	LOS F	100.7	797.3	1.00	0.10	5.88	22.2
Approa	ch	1431	5.3	1506	5.3	1.083	97.6	NA	100.7	797.3	1.00	0.10	5.88	24.0
West: [Dickens P	lace West												
10	L2	134	9.7	141	9.7	6.874	5354.2	LOS F	111.3	903.5	1.00	3.42	8.60	0.7
12	R2	37	0.0	39	0.0	6.874	5421.9	LOS F	111.3	903.5	1.00	3.42	8.60	0.7
Approa	ch	171	7.6	180	7.6	6.874	5368.8	LOS F	111.3	903.5	1.00	3.42	8.60	0.7
All Veh	icles	2605	6.2	2742	6.2	6.874	406.3	NA	111.3	903.5	0.61	0.29	3.80	7.8

D1.3 SWH/ Stone Street

D1.3.1 AM Peak

Vehicle	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT Vo [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highv	vay South											
1b	L3	55	11.8	58	11.8	0.039	7.6	LOS A	0.0	0.0	0.00	0.63	0.00	56.0
2	T1	1413	5.9	1487	5.9	0.816	0.8	LOS A	0.0	0.0	0.00	0.00	0.00	67.9
Approa	ch	1468	6.1	1545	6.1	0.816	1.1	NA	0.0	0.0	0.00	0.02	0.00	67.4
North: \$	South We	stern Highw	ay North											
8	T1	779	8.4	820	8.4	1.579	1087.4	LOS F	732.6	6042.5	1.00	0.00	4.92	3.1
9a	R1	29	27.9	31	27.9	1.988	1129.4	LOS F	14.2	154.7	1.00	1.57	3.61	2.8
Approa	ch	808	9.1	851	9.1	1.988	1088.9	NA	732.6	6042.5	1.00	0.06	4.87	3.1
SouthW	Vest: Stor	ne Street So	uth-West											
30a	L1	63	31.6	66	31.6	16.569	14125.0	LOS F	114.4	1199.3	1.00	1.71	3.54	0.3
32b	R3	63	15.8	66	15.8	16.569	14137.3	LOS F	114.4	1199.3	1.00	1.71	3.54	0.3
Approa	ch	126	23.7	133	23.7	16.569	14131.2	LOS F	114.4	1199.3	1.00	1.71	3.54	0.3
All Vehi	icles	2402	8.0	2528	8.0	16.569	1108.2	NA	732.6	6042.5	0.39	0.12	1.83	3.1

D1.3.2 PM Peak

Vehicle	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highv	vay South											
1b	L3 T1	48	16.6	51	16.6	0.038	7.7	LOSA	0.0	0.0	0.00	0.63	0.00	54.8
2 Approa		948 996	6.5 7.0	998 1048	6.5 7.0	0.551 0.551	0.2	LOS A NA	0.0	0.0	0.00	0.00	0.00	69.4 68.5
North: 9	South We	stern Highv	ay North											
8	T1	1408	4.0	1482	4.0	0.803	0.7	LOS A	0.0	0.0	0.00	0.00	0.00	68.1
9a	R1	21	38.5	22	38.5	0.237	44.5	LOS E	0.7	9.1	0.92	0.98	0.99	34.0
Approa	ch	1429	4.5	1504	4.5	0.803	1.4	NA	0.7	9.1	0.01	0.01	0.01	67.1
SouthW	/est: Stor	ne Street So	uth-West											
30a	L1	63	26.3	66	26.3	40.809	35895.8	LOS F	272.7	2402.4	1.00	1.69	3.63	0.1
32b	R3	230	7.2	242	7.2	40.809	35907.7	LOS F	272.7	2402.4	1.00	1.69	3.63	0.1
Approa	ch	293	11.3	308	11.3	40.809	35905.1	LOS F	272.7	2402.4	1.00	1.69	3.63	0.1
All Vehi	icles	2718	6.1	2861	6.1	40.809	3871.5	NA	272.7	2402.4	0.11	0.20	0.40	0.9

D1.4 SWH/ Eleventh Road

D1.4.1 AM Peak

Vehicl	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT Vo [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highv	vay South											
1 2	L2 T1	170 1602	10.0 6.6	179 1686	10.0 6.6	0.111 0.959	7.1 3.1	LOS A LOS A	0.0 0.0	0.0 0.0	0.00	0.63 0.00	0.00 0.00	62.0 70.5
Approa	ch	1772	6.9	1865	6.9	0.959	3.5	NA	0.0	0.0	0.00	0.06	0.00	69.6
North:	South We	stern Highw	ay North											
8	T1	817	9.9	860	9.9	2.393	3008.3	LOS F	1403.3	10580.6	1.00	0.00	6.43	1.1
9	R2	33	5.3	35	5.3	3.214	2224.8	LOS F	22.1	161.6	1.00	1.42	3.58	1.5
Approa	ch	850	9.7	895	9.7	3.214	2977.9	NA	1403.3	10580.6	1.00	0.06	6.32	1.1
West: E	Eleventh F	Road West												
10	L2	47	17.4	49	17.4	34.009	29802.0	LOS F	202.6	1514.1	1.00	1.36	3.26	0.1
12	R2	161	7.7	169	7.7	34.009	29803.7	LOS F	202.6	1514.1	1.00	1.36	3.26	0.1
Approa	ch	208	9.9	219	9.9	34.009	29803.3	LOS F	202.6	1514.1	1.00	1.36	3.26	0.1
All Veh	icles	2830	8.0	2979	8.0	34.009	3087.1	NA	1403.3	10580.6	0.37	0.15	2.14	1.1

D1.4.2 PM Peak

Vehic	le Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT V([Total veh/h	DLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highw	ay South											
1 2 Approa	L2 T1 ach	174 1068 1242	2.2 7.6 6.8	183 1124 1307	2.2 7.6 6.8	0.103 0.638 0.638	7.0 0.3 1.2	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0	0.00 0.00 0.00	0.63 0.00 0.09	0.00 0.00 0.00	64.6 79.1 76.7
North:	South We	stern Highw	ay North											
8	T1	1508	4.0	1587	4.0	0.859	0.9	LOSA	0.0	0.0	0.00	0.00	0.00	77.1
9 Approa	R2 ach	65 1573	8.1 4.2	68 1656	8.1 4.2	0.507 0.859	40.6 2.5	LOS E NA	1.6 1.6	12.1 12.1	0.94	1.03 0.04	0.05	39.6 74.2
West: I	Eleventh I	Road West												
10	L2	58	3.6	61	3.6	34.355	30089.4	LOS F	229.1	1637.1	1.00	1.46	3.80	0.1
12	R2	194	2.1	204	2.1	34.355	30101.5	LOS F	229.1	1637.1	1.00	1.46	3.80	0.1
Approa	ach	252	2.4	265	2.4	34.355	30098.7	LOS F	229.1	1637.1	1.00	1.46	3.80	0.1
All Veh	icles	3067	5.1	3228	5.1	34.355	2474.8	NA	229.1	1637.1	0.10	0.18	0.34	1.4

D1.5 Eleventh Road/ Wungong Road

D1.5.1 AM Peak

Vehicl	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthE	ast: Elev	enth Road S	South-East											
5	T1	282	9.7	297	9.7	0.257	0.9	LOS A	0.9	6.9	0.26	0.17	0.27	74.6
6	R2	85	0.0	89	0.0	0.257	9.2	LOS A	0.9	6.9	0.26	0.17	0.27	62.8
Approa	ich	367	7.5	386	7.5	0.257	2.8	NA	0.9	6.9	0.26	0.17	0.27	71.2
NorthE	ast: Wun	gong Road I	North-East											
7	L2	56	7.7	59	7.7	0.037	6.5	LOS A	0.2	1.4	0.37	0.57	0.37	54.6
9	R2	110	14.3	116	14.3	0.162	8.2	LOSA	0.4	3.4	0.45	0.78	0.45	50.2
Approa	ich	166	12.1	175	12.1	0.162	7.6	LOSA	0.4	3.4	0.42	0.71	0.42	51.7
NorthW	/est: Elev	enth Road N	North-West											
10	L2	292	10.5	307	10.5	0.258	7.2	LOS A	0.0	0.0	0.00	0.44	0.00	61.5
11	T1	136	8.1	143	8.1	0.258	0.0	LOSA	0.0	0.0	0.00	0.44	0.00	71.7
Approa	ich	428	9.7	451	9.7	0.258	4.9	NA	0.0	0.0	0.00	0.44	0.00	64.4
All Veh	icles	961	9.3	1012	9.3	0.258	4.6	NA	0.9	6.9	0.17	0.38	0.17	64.0

D1.5.2 PM Peak

Vehicl	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT VO [Total veh/h	DLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
SouthE	ast: Eleve	enth Road S	outh-East											
5 6	T1 R2	306 103	4.0 8.8	322 108	4.0 8.8	0.296 0.296	1.4 10.0	LOS A LOS A	1.3 1.3	10.0 10.0	0.32 0.32	0.19 0.19	0.35 0.35	73.9 58.7
Approa	ch	409	5.2	431	5.2	0.296	3.5	NA	1.3	10.0	0.32	0.19	0.35	69.0
NorthE	ast: Wung	gong Road N	North-East											
7	L2	66	0.0	69	0.0	0.044	6.5	LOS A	0.2	1.5	0.40	0.59	0.40	57.3
9	R2	258	7.2	272	7.2	0.392	9.4	LOS A	1.3	10.7	0.56	0.88	0.75	51.2
Approa	ch	324	5.7	341	5.7	0.392	8.8	LOSA	1.3	10.7	0.53	0.82	0.67	52.4
NorthW	est: Elev	enth Road N	lorth-West											
10	L2	226	11.6	238	11.6	0.268	7.3	LOS A	0.0	0.0	0.00	0.33	0.00	62.4
11	T1	218	7.1	229	7.1	0.268	0.0	LOSA	0.0	0.0	0.00	0.33	0.00	73.7
Approa	ch	444	9.4	467	9.4	0.268	3.7	NA	0.0	0.0	0.00	0.33	0.00	67.4
All Veh	icles	1177	6.9	1239	6.9	0.392	5.1	NA	1.3	10.7	0.26	0.42	0.31	63.0

D2 Individual sites – Do Something

D2.1 SWH/ William St/ Bedfordale Hill Rd

D2.1.1 AM Peak

Vehic	le Mover	ment Perfor	mance											
Mov ID	Turn	INPUT VO [Total veh/h	DLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highwa	ay South											
3	L1	254	3.8	267	3.8	* 0.951	65.4	LOS E	44.9	371.0	1.00	1.26	1.39	26.5
4	T1	1159	9.8	1220	9.8	0.951	59.2	LOS E	47.9	410.1	1.00	1.29	1.38	30.2
5	R2	33	10.0	35	10.0	* 0.104	20.9	LOS C	0.9	7.7	0.65	0.67	0.65	38.2
Approa	ach	1446	8.8	1522	8.8	0.951	59.4	LOS E	47.9	410.1	0.99	1.27	1.37	29.7
East: E	Bedfordale	e Hill Road Ea	ast											
6	L2	30	0.0	32	0.0	0.914	65.4	LOS E	10.3	76.0	1.00	1.10	1.54	24.8
6a	R1	143	0.0	151	0.0	* 0.914	63.7	LOS E	10.3	76.0	1.00	1.10	1.54	22.4
7	R2	118	6.4	124	6.4	0.677	53.5	LOS D	6.1	47.8	1.00	0.84	1.10	26.6
Approa	ach	291	2.6	306	2.6	0.914	59.8	LOS E	10.3	76.0	1.00	1.00	1.36	24.3
North:	South We	estern Highwa	ay North											
8	L2	39	13.8	41	13.8	0.361	23.8	LOS C	8.3	70.8	0.68	0.61	0.68	38.6
9	T1	524	10.7	552	10.7	0.361	16.6	LOS B	8.9	76.2	0.66	0.58	0.66	46.9
10	R3	41	0.0	43	0.0	* 0.324	32.4	LOS C	1.2	8.8	0.98	0.73	0.98	35.5
Approa	ach	604	10.2	636	10.2	0.361	18.1	LOS B	8.9	76.2	0.68	0.59	0.68	45.5
NorthV	Vest: Willi	am Street No	orth-West											
11	L3	94	1.8	99	1.8	0.765	49.9	LOS D	8.5	64.5	1.00	1.04	1.16	30.1
1	L1	65	2.6	68	2.6	* 0.765	47.7	LOS D	8.5	64.5	1.00	1.04	1.16	25.4
2	R1	197	5.2	207	5.2	0.765	51.7	LOS D	8.5	64.5	1.00	0.94	1.18	28.9
Approa	ach	356	3.8	375	3.8	0.765	50.5	LOS D	8.5	65.4	1.00	0.98	1.17	28.6
All Veh	icles	2697	7.8	2839	7.8	0.951	49.0	LOS D	47.9	410.1	0.92	1.05	1.19	31.5

D2.1.2 PM Peak

Mov	Turn	INPUT VO		DEMAND		Deg.	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	Aver.
ID		[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South:	South We	estern Highw	ay South											
3	L1	184	0.9	194	0.9	* 0.939	78.1	LOS E	43.4	347.2	1.00	1.21	1.29	24.1
4	T1	969	8.5	1020	8.5	* 0.939	72.0	LOS E	45.8	379.4	1.00	1.23	1.28	27.3
5	R2	21	7.7	22	7.7	0.139	36.6	LOS D	1.0	7.5	0.84	0.69	0.84	31.9
Approa	ach	1174	7.3	1236	7.3	0.939	72.3	LOS E	45.8	379.4	1.00	1.22	1.28	26.9
East: E	Bedfordale	Hill Road E	ast											
6	L2	45	11.1	47	11.1	* 0.743	68.4	LOS E	9.3	73.6	1.00	0.88	1.13	24.1
6a	R1	93	5.4	98	5.4	0.743	66.4	LOS E	9.3	73.6	1.00	0.88	1.13	21.8
7	R2	48	10.5	51	10.5	0.221	59.0	LOS E	2.9	23.3	0.93	0.74	0.93	25.0
Approa	ach	186	8.1	196	8.1	0.743	65.0	LOS E	9.3	73.6	0.98	0.85	1.08	23.2
North:	South We	stern Highw	ay North											
8	L2	41	0.0	43	0.0	0.680	40.9	LOS D	21.8	180.0	0.88	0.78	0.88	32.8
9	T1	793	8.1	835	8.1	0.680	33.9	LOS C	21.9	183.4	0.87	0.77	0.87	38.4
10	R3	44	9.4	46	9.4	* 0.478	44.9	LOS D	2.1	16.6	1.00	0.74	1.00	31.2
Approa	ach	878	7.8	924	7.8	0.680	34.8	LOS C	21.9	183.4	0.87	0.77	0.87	37.8
NorthV	Vest: Willia	am Street No	orth-West											
11	L3	81	4.3	85	4.3	0.799	62.3	LOS E	22.2	168.4	0.99	1.00	1.08	26.8
1	L1	136	2.5	143	2.5	* 0.799	60.1	LOS E	22.2	168.4	0.99	1.00	1.08	22.6
2	R1	436	3.1	459	3.1	0.799	55.7	LOS E	22.2	168.4	0.97	0.93	1.07	28.0
Approa	ach	653	3.1	687	3.1	0.799	57.4	LOS E	22.2	168.4	0.98	0.95	1.07	26.7
	icles	2891	6.6	3043	6.6	0.939	57.1	LOS E	45.8	379.4	0.95	1.00	1.10	29.

D2.2 SWH/ Dickens Place

D2.2.1 AM Peak - Priority Controlled layout

Vehicl	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT VO [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highw	vay South											
1 2	L2 T1	21 1470	7.7 7.0	22 1547	7.7 7.0	0.013 0.431	6.5 0.1	LOS A LOS A	0.0 0.0	0.0 0.0	0.00	0.61 0.00	0.00 0.00	57.5 69.6
Approa	ch	1491	7.0	1569	7.0	0.431	0.2	NA	0.0	0.0	0.00	0.01	0.00	69.4
North:	South We	stern Highw	ay North											
8	T1	747	7.8	786	7.8	0.431	7.7	LOS A	4.1	33.4	0.04	0.00	0.04	61.0
9	R2	62	22.5	65	22.5	3.585	2447.2	LOS F	38.2	353.5	1.00	1.86	5.15	1.4
Approa	ch	809	8.9	852	8.9	3.585	194.7	NA	38.2	353.5	0.11	0.14	0.43	14.2
West: [Dickens P	lace West												
10	L2	83	13.8	87	13.8	1.108	243.5	LOS F	11.0	92.7	1.00	1.90	4.09	11.4
12	R2	14	40.0	15	40.0	2.456	1760.5	LOS F	10.6	110.7	1.00	1.36	2.35	1.7
Approa	ch	97	17.6	102	17.6	2.456	462.4	LOS F	11.0	110.7	1.00	1.82	3.83	6.3
All Veh	icles	2397	8.1	2523	8.1	3.585	84.6	NA	38.2	353.5	0.08	0.13	0.30	25.5

D2.2.2 PM Peak – Priority Controlled layout

Mov	Turn	INPUT V	DLUMES	DEMAND	FLOWS	Deg.	Aver.	Level of	95% BACK	OF QUEUE	Prop.	Effective	Aver. No.	Aver
ID		[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/f
South:	South We	estern Highv	vay South											
1	L2	33	5.0	35	5.0	0.020	6.5	LOS A	0.0	0.0	0.00	0.61	0.00	59.2
2	T1	970	7.3	1021	7.3	0.286	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	69.8
Approa	ch	1003	7.2	1056	7.2	0.286	0.3	NA	0.0	0.0	0.00	0.02	0.00	69.4
North:	South We	stern Highw	ay North											
8	T1	1353	4.6	1424	4.6	0.388	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	69.7
9	R2	78	17.7	82	17.7	0.915	112.6	LOS F	5.0	46.1	0.99	1.36	2.59	20.7
Approa	ch	1431	5.3	1506	5.3	0.915	6.2	NA	5.0	46.1	0.05	0.07	0.14	61.8
West: [Dickens P	lace West												
10	L2	134	9.7	141	9.7	0.547	27.1	LOS D	2.7	22.1	0.90	1.11	1.38	37.8
12	R2	37	0.0	39	0.0	6.491	5185.0	LOS F	34.3	252.2	1.00	1.42	2.82	0.6
Approa	ch	171	7.6	180	7.6	6.491	1143.1	LOS F	34.3	252.2	0.92	1.18	1.69	2.8
All Veh	icles	2605	6.2	2742	6.2	6.491	78.6	NA	34.3	252.2	0.09	0.13	0.19	26.5

D2.2.3 AM Peak – Signalised

Vehicl	e Move	ment Perfo	rmance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South W	estern Highv	vay South											
1	L2	21	7.7	22	7.7	0.015	8.0	LOS A	0.2	1.5	0.17	0.63	0.17	51.2
2	T1	1470	7.0	1547	7.0	* 0.596	7.6	LOSA	19.8	161.9	0.52	0.48	0.52	61.1
Approa	ch	1491	7.0	1569	7.0	0.596	7.6	LOSA	19.8	161.9	0.52	0.48	0.52	60.9
North: \$	South We	estern Highw	ay North											
8	T1	747	7.8	786	7.8	0.268	2.0	LOSA	4.3	35.7	0.23	0.20	0.23	67.4
9	R2	62	22.5	65	22.5	* 0.339	14.8	LOS B	1.4	13.2	0.57	0.73	0.57	46.5
Approa	ch	809	8.9	852	8.9	0.339	3.0	LOSA	4.3	35.7	0.25	0.24	0.25	65.2
West: E	Dickens F	Place West												
10	L2	83	13.8	87	13.8	0.525	55.1	LOS E	5.4	46.6	0.98	0.79	0.98	28.8
12	R2	14	40.0	15	40.0	* 0.525	55.2	LOS E	5.4	46.6	0.98	0.79	0.98	26.6
Approa	ch	97	17.6	102	17.6	0.525	55.1	LOS E	5.4	46.6	0.98	0.79	0.98	28.5
All Veh	icles	2397	8.1	2523	8.1	0.596	8.0	LOSA	19.8	161.9	0.45	0.41	0.45	59.5

D2.2.4 PM Peak – Signalised

Vehicl	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT VO [Total veh/h	DLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK ([Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highw	ay South											
1 2 Approa	L2 T1 ch	33 970 1003	5.0 7.3 7.2	35 1021 1056	5.0 7.3 7.2	0.029 * 0.573 0.573	9.4 11.5 11.4	LOS A LOS B	0.3 10.6 10.6	2.5 87.7 87.7	0.32 0.75 0.74	0.66 0.66 0.66	0.32 0.75 0.74	50.3 57.3 57.1
North:	South We	stern Highw	ay North											
8	T1	1353	4.6	1424	4.6	0.555	4.8	LOS A	10.2	80.4	0.53	0.48	0.53	64.1
9	R2	78	17.7	82	17.7	* 0.242	13.8	LOS B	0.9	8.3	0.69	0.74	0.69	47.1
Approa	ich	1431	5.3	1506	5.3	0.555	5.3	LOSA	10.2	80.4	0.54	0.49	0.54	62.9
West: [Dickens F	lace West												
10	L2	134	9.7	141	9.7	0.553	29.2	LOS C	5.0	40.7	0.95	0.80	0.95	37.0
12	R2	37	0.0	39	0.0	* 0.553	29.1	LOS C	5.0	40.7	0.95	0.80	0.95	38.7
Approa	ch	171	7.6	180	7.6	0.553	29.2	LOS C	5.0	40.7	0.95	0.80	0.95	37.3
All Veh	icles	2605	6.2	2742	6.2	0.573	9.2	LOSA	10.6	87.7	0.64	0.58	0.64	58.0

D2.2.5 AM Peak - Roundabouts

Vehicle	e Mover	ment Perfo	rmance											
Mov ID	Turn	INPUT VO [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highv	vay South											
1 2	L2 T1	21 1470	7.7 7.0	22 1547	7.7 7.0	0.516 0.516	5.2 5.4	LOS A LOS A	4.4 4.5	36.4 36.5	0.31 0.33	0.43 0.43	0.31 0.33	53.6 60.8
Approa	ch	1491	7.0	1569	7.0	0.516	5.4	LOSA	4.5	36.5	0.33	0.43	0.33	60.7
North: 9	South We	estern Highw	ay North											
8	T1	747	7.8	786	7.8	0.267	5.0	LOSA	2.2	18.4	0.14	0.41	0.14	61.5
9	R2	62	22.5	65	22.5	0.267	11.2	LOS B	2.2	18.2	0.15	0.44	0.15	56.2
Approa	ch	809	8.9	852	8.9	0.267	5.5	LOSA	2.2	18.4	0.14	0.42	0.14	61.0
West: E	Dickens F	Place West												
10	L2	83	13.8	87	13.8	0.209	8.4	LOS A	0.9	7.9	0.75	0.84	0.75	47.2
12	R2	14	40.0	15	40.0	0.209	15.1	LOS B	0.9	7.9	0.75	0.84	0.75	42.5
Approa	ch	97	17.6	102	17.6	0.209	9.4	LOSA	0.9	7.9	0.75	0.84	0.75	46.4
All Vehi	icles	2397	8.1	2523	8.1	0.516	5.6	LOSA	4.5	36.5	0.28	0.44	0.28	60.1

D2.2.6 PM Peak – Roundabouts

Vehicle	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT VO [Total veh/h	DLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highw	ay South											
1 2	L2 T1	33 970	5.0 7.3	35 1021	5.0 7.3	0.358 0.358	5.1 5.4	LOS A LOS A	2.6 2.6	21.5 21.5	0.30 0.32	0.44 0.44	0.30 0.32	53.7 60.8
Approa		1003	7.2	1056	7.2	0.358	5.4	LOSA	2.6	21.5	0.32	0.44	0.32	60.5
North: S	South We	stern Highw	ay North											
8	T1	1353	4.6	1424	4.6	0.473	5.2	LOS A	4.9	38.8	0.27	0.41	0.27	61.7
9	R2	78	17.7	82	17.7	0.473	11.4	LOS B	4.9	38.9	0.29	0.43	0.29	55.7
Approa	ch	1431	5.3	1506	5.3	0.473	5.5	LOSA	4.9	38.9	0.27	0.41	0.27	61.3
West: E	Dickens P	lace West												
10	L2	134	9.7	141	9.7	0.270	6.4	LOS A	1.2	9.6	0.67	0.81	0.67	49.1
12	R2	37	0.0	39	0.0	0.270	11.1	LOS B	1.2	9.6	0.67	0.81	0.67	52.8
Approa	ch	171	7.6	180	7.6	0.270	7.4	LOSA	1.2	9.6	0.67	0.81	0.67	49.9
All Vehi	icles	2605	6.2	2742	6.2	0.473	5.6	LOSA	4.9	38.9	0.31	0.45	0.31	60.1

D2.3 SWH/ Stone Street

D2.3.1 AM Peak - Priority Controlled layout

Vehicl	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highv	way South											
1b 2 Approa	L3 T1 ch	55 1413 1468	11.8 5.9 6.1	58 1487 1545	11.8 5.9 6.1	0.039 0.408 0.408	7.6 0.1 0.4	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0	0.00 0.00 0.00	0.63 0.00 0.02	0.00 0.00 0.00	56.0 69.7 69.0
North: \$	South We	stern Highw	vay North											
8	T1	779	8.4	820	8.4	0.447	6.2	LOS A	6.4	52.6	0.04	0.00	0.05	62.5
9a	R1	29	27.9	31	27.9	2.178	1297.8	LOS F	15.7	171.0	1.00	1.55	3.51	2.5
Approa	ch	808	9.1	851	9.1	2.178	52.6	NA	15.7	171.0	0.08	0.06	0.17	33.3
SouthV	Vest: Stor	ne Street So	uth-West											
30a	L1	63	31.6	66	31.6	1.490	583.4	LOS F	18.7	224.3	1.00	2.37	5.15	5.3
32b	R3	63	15.8	66	15.8	11.053	9221.0	LOS F	61.2	548.0	1.00	1.49	2.93	0.4
Approa	ch	126	23.7	133	23.7	11.053	4902.2	LOS F	61.2	548.0	1.00	1.93	4.04	0.7
All Veh	icles	2402	8.0	2528	8.0	11.053	275.1	NA	61.2	548.0	0.08	0.13	0.27	10.7

D2.3.2 PM Peak – Priority Controlled layout

Vehicle	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT Vo [Total veh/h		DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highv	vay South											
1b 2	L3 T1	48 948	16.6 6.5	51 998	16.6 6.5	0.038 0.276	7.7 0.1	LOS A LOS A	0.0	0.0 0.0	0.00	0.63 0.00	0.00 0.00	54.8 69.8
Approa	ch	996	7.0	1048	7.0	0.276	0.4	NA	0.0	0.0	0.00	0.03	0.00	68.9
North: 9	South We	stern Highw	ay North											
8	T1	1408	4.0	1482	4.0	0.401	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	69.7
9a	R1	21	38.5	22	38.5	0.503	109.0	LOS F	1.5	20.2	0.96	1.04	1.20	21.5
Approa	ch	1429	4.5	1504	4.5	0.503	1.7	NA	1.5	20.2	0.01	0.02	0.02	67.4
SouthW	/est: Stor	ne Street So	uth-West											
30a	L1	63	26.3	66	26.3	0.410	34.0	LOS D	1.6	19.7	0.90	1.04	1.16	33.5
32b	R3	230	7.2	242	7.2	40.351	35501.4	LOS F	231.4	1828.2	1.00	1.50	3.09	0.1
Approa	ch	293	11.3	308	11.3	40.351	27875.3	LOS F	231.4	1828.2	0.98	1.40	2.68	0.1
All Vehi	cles	2718	6.1	2861	6.1	40.351	3006.0	NA	231.4	1828.2	0.11	0.17	0.30	1.2

D2.3.3 AM Peak – Signalised

Vehicl	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highv	vay South											
1b 2	L3 T1	55 1413	11.8 5.9	58 1487	11.8 5.9	0.050 * 0.694	9.8 12.4	LOS A LOS B	0.5 20.2	4.3 163.0	0.25 0.75	0.67 0.68	0.25 0.75	50.4 56.6
Approa	ch	1468	6.1	1545	6.1	0.694	12.3	LOS B	20.2	163.0	0.73	0.68	0.73	56.3
North: \$	South We	stern Highw	ay North											
8	T1	779	8.4	820	8.4	0.317	3.8	LOS A	5.4	44.7	0.37	0.32	0.37	65.2
9a	R1	29	27.9	31	27.9	* 0.152	15.6	LOS B	0.5	5.6	0.68	0.69	0.68	46.9
Approa	ch	808	9.1	851	9.1	0.317	4.3	LOS A	5.4	44.7	0.38	0.34	0.38	64.3
SouthV	/est: Stor	ne Street So	uth-West											
30a	L1	63	31.6	66	31.6	0.712	43.2	LOS D	5.5	57.8	1.00	0.90	1.18	30.1
32b	R3	63	15.8	66	15.8	* 0.712	45.0	LOS D	5.5	57.8	1.00	0.90	1.18	31.8
Approa	ch	126	23.7	133	23.7	0.712	44.1	LOS D	5.5	57.8	1.00	0.90	1.18	30.9
All Veh	icles	2402	8.0	2528	8.0	0.712	11.2	LOS B	20.2	163.0	0.63	0.58	0.64	56.2

D2.3.4 PM Peak – Signalised

		nent Perfo												
Mov	Turn	INPUT VO		DEMAND		Deg.	Aver.	Level of		OF QUEUE	Prop.	Effective	Aver. No.	Aver
ID		[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
South:	South We	veh/h estern Highv	% vav South	veh/h	%	v/c	sec		veh	m				km/t
			•											
1b	L3	48	16.6	51	16.6	0.054	10.7	LOS B	0.5	4.2	0.33	0.68	0.33	49.7
2	T1	948	6.5	998	6.5	* 0.787	22.8	LOS C	14.9	121.0	0.96	0.93	1.11	48.6
Approa	ch	996	7.0	1048	7.0	0.787	22.2	LOS C	14.9	121.0	0.93	0.91	1.07	48.7
North:	South We	stern Highw	ay North											
8	T1	1408	4.0	1482	4.0	0.725	11.5	LOS B	16.7	129.9	0.81	0.74	0.82	57.3
9a	R1	21	38.5	22	38.5	* 0.103	17.6	LOS B	0.3	4.5	0.83	0.69	0.83	45.7
Approa	ch	1429	4.5	1504	4.5	0.725	11.5	LOS B	16.7	129.9	0.81	0.74	0.82	57.1
SouthV	Vest: Stor	ne Street So	uth-West											
30a	L1	63	26.3	66	26.3	0.813	32.5	LOS C	10.2	89.5	0.99	0.99	1.29	33.5
32b	R3	230	7.2	242	7.2	* 0.813	34.3	LOS C	10.2	89.5	0.99	0.99	1.29	36.0
Approa	ch	293	11.3	308	11.3	0.813	33.9	LOS C	10.2	89.5	0.99	0.99	1.29	35.4
All Vehi	icles	2718	6.1	2861	6.1	0.813	17.9	LOS B	16.7	129.9	0.87	0.83	0.97	50.6

D2.3.5 AM Peak – Roundabouts

Vehicle	e Mover	ment Perfo	rmance											
Mov ID	Turn	INPUT V [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highv	vay South											
1b 2	L3 T1	55 1413	11.8 5.9	58 1487	11.8 5.9	0.485 0.485	4.9 5.1	LOS A LOS A	4.2 4.2	34.3 34.3	0.21 0.22	0.41 0.41	0.21 0.22	53.2 61.8
Approa	ch	1468	6.1	1545	6.1	0.485	5.1	LOS A	4.2	34.3	0.22	0.41	0.22	61.5
North: 9	South We	estern Highw	ay North											
8	T1	779	8.4	820	8.4	0.289	5.3	LOS A	2.3	19.0	0.30	0.43	0.30	60.6
9a	R1	29	27.9	31	27.9	0.289	10.4	LOS B	2.2	18.9	0.32	0.44	0.32	54.6
Approa	ch	808	9.1	851	9.1	0.289	5.5	LOSA	2.3	19.0	0.30	0.43	0.30	60.4
SouthW	/est: Stor	ne Street So	uth-West											
30a	L1	63	31.6	66	31.6	0.111	6.5	LOS A	0.4	5.3	0.67	0.74	0.67	46.6
32b	R3	63	15.8	66	15.8	0.120	13.6	LOS B	0.5	4.2	0.67	0.87	0.67	46.0
Approa	ch	126	23.7	133	23.7	0.120	10.1	LOS B	0.5	5.3	0.67	0.81	0.67	46.3
All Vehi	icles	2402	8.0	2528	8.0	0.485	5.5	LOSA	4.2	34.3	0.27	0.44	0.27	60.0

D2.3.6 PM Peak – Roundabouts

Vehic	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT Vo [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highv	vay South											
1b	L3	48	16.6	51	16.6	0.331	4.9	LOS A	2.7	22.3	0.18	0.41	0.18	53.3
2	T1	948	6.5	998	6.5	0.331	5.1	LOS A	2.7	22.3	0.19	0.40	0.19	61.9
Approa	ich	996	7.0	1048	7.0	0.331	5.0	LOS A	2.7	22.3	0.19	0.40	0.19	61.4
North:	South We	stern Highw	ay North											
8	T1	1408	4.0	1482	4.0	0.589	6.8	LOS A	5.9	45.7	0.70	0.59	0.70	59.4
9a	R1	21	38.5	22	38.5	0.589	13.9	LOS B	5.6	44.4	0.72	0.63	0.72	52.4
Approa	ich	1429	4.5	1504	4.5	0.589	6.9	LOSA	5.9	45.7	0.70	0.59	0.70	59.3
SouthV	Vest: Stor	ne Street So	uth-West											
30a	L1	63	26.3	66	26.3	0.151	7.7	LOS A	0.5	6.3	0.62	0.71	0.62	46.9
32b	R3	230	7.2	242	7.2	0.246	10.9	LOS B	1.0	8.2	0.59	0.81	0.59	48.9
Approa	ich	293	11.3	308	11.3	0.246	10.2	LOS B	1.0	8.2	0.59	0.79	0.59	48.5
All Veh	icles	2718	6.1	2861	6.1	0.589	6.6	LOSA	5.9	45.7	0.50	0.55	0.50	58.6

D2.4 SWH/ Eleventh Road

D2.4.1 AM Peak - Priority Controlled layout

Vehicl	e Mover	ment Perfo	rmance											
Mov ID	Turn	INPUT VO [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highv	vay South											
1	L2	170	10.0	179	10.0	0.111	7.1	LOS A	0.0	0.0	0.00	0.63	0.00	62.0
2	T1	1602	6.6	1686	6.6	0.480	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	79.5
Approa	ich	1772	6.9	1865	6.9	0.480	0.8	NA	0.0	0.0	0.00	0.06	0.00	77.4
North:	South We	estern Highw	ay North											
8	T1	817	9.9	860	9.9	0.474	5.3	LOS A	5.7	43.0	0.04	0.00	0.04	71.6
9	R2	33	5.3	35	5.3	2.451	1521.2	LOS F	18.8	137.3	1.00	1.46	3.78	2.1
Approa	ich	850	9.7	895	9.7	2.451	64.2	NA	18.8	137.3	0.08	0.06	0.19	31.7
West: E	Eleventh I	Road West												
10	L2	47	17.4	49	17.4	1.031	275.1	LOS F	6.1	49.1	1.00	1.31	2.61	11.0
12	R2	161	7.7	169	7.7	28.246	24624.9	LOS F	160.7	1174.2	1.00	1.33	3.08	0.1
Approa	ich	208	9.9	219	9.9	28.246	19122.8	LOS F	160.7	1174.2	1.00	1.32	2.97	0.2
All Veh	icles	2830	8.0	2979	8.0	28.246	1425.3	NA	160.7	1174.2	0.10	0.15	0.27	2.4

D2.4.2 PM Peak - Priority Controlled layout

Vehicle	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT VO [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highw	vay South											
1 2	L2 T1	174 1068	2.2 7.6	183 1124	2.2 7.6	0.103 0.319	7.0 0.1	LOS A LOS A	0.0	0.0	0.00	0.63 0.00	0.00	64.6 79.8
Approa	ch	1242	6.8	1307	6.8	0.319	1.0	NA	0.0	0.0	0.00	0.09	0.00	77.2
North: \$	South We	stern Highw	ay North											
8	T1	1508	4.0	1587	4.0	0.430	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	79.6
9	R2	65	8.1	68	8.1	0.998	175.3	LOS F	6.1	45.9	1.00	1.36	2.97	16.2
Approa	ch	1573	4.2	1656	4.2	0.998	7.3	NA	6.1	45.9	0.04	0.06	0.12	68.5
West: E	Eleventh I	Road West												
10	L2	58	3.6	61	3.6	0.278	26.4	LOS D	1.0	7.4	0.87	0.98	0.99	47.6
12	R2	194	2.1	204	2.1	34.035	29819.7	LOS F	191.8	1366.5	1.00	1.33	3.17	0.1
Approa	ch	252	2.4	265	2.4	34.035	22962.5	LOS F	191.8	1366.5	0.97	1.25	2.67	0.2
All Vehi	icles	3067	5.1	3228	5.1	34.035	1890.9	NA	191.8	1366.5	0.10	0.17	0.28	1.9

S

D2.4.3 AM Peak – Signalised

Vehicl	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT VO [Total veh/h	OLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highv	vay South											
1 2	L2 T1	170 1602	10.0 6.6	179 1686	10.0 6.6	0.136 * 0.856	9.0 22.5	LOS A LOS C	1.7 40.7	12.9 299.2	0.22 0.82	0.68 0.82	0.22 0.91	60.1 53.5
Approa	ch	1772	6.9	1865	6.9	0.856	21.2	LOS C	40.7	299.2	0.77	0.81	0.84	54.1
North:	South We	stern Highw	ay North											
8	T1	817	9.9	860	9.9	0.338	5.1	LOS A	7.4	55.8	0.39	0.34	0.39	71.9
9	R2	33	5.3	35	5.3	* 0.180	26.2	LOS C	1.0	7.1	0.83	0.74	0.83	47.6
Approa	ch	850	9.7	895	9.7	0.338	5.9	LOSA	7.4	55.8	0.40	0.36	0.40	70.5
West: E	Eleventh F	Road West												
10	L2	47	17.4	49	17.4	0.861	61.5	LOS E	12.1	90.7	1.00	0.94	1.34	31.1
12	R2	161	7.7	169	7.7	* 0.861	61.5	LOS E	12.1	90.7	1.00	0.94	1.34	32.5
Approa	ch	208	9.9	219	9.9	0.861	61.5	LOS E	12.1	90.7	1.00	0.94	1.34	32.2
All Veh	icles	2830	8.0	2979	8.0	0.861	19.6	LOS B	40.7	299.2	0.67	0.68	0.75	55.2

D2.4.4 PM Peak – Signalised

Vehic	le Move	ement Per	formance	:										
Mov ID	Turn	INPUT V	DLUMES	DEMAND	FLOWS	Deg. Satn	Aver. Delay	Level of Service		ACK OF EUE	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m				km/h
South:	South V	Vestern Hig	hway South	h										
1	L2	174	2.2	183	2.2	0.133	9.4	LOSA	1.8	12.6	0.27	0.69	0.27	62.0
2	T1	1068	7.6	1124	7.6	* 0.715	17.0	LOS B	18.9	141.3	0.81	0.73	0.82	58.2
Approa	ach	1242	6.8	1307	6.8	0.715	16.0	LOS B	18.9	141.3	0.74	0.72	0.74	58.7
North:	South W	estern Higl	hway North											
8	T1	1508	4.0	1587	4.0	0.693	9.8	LOSA	20.7	149.2	0.68	0.62	0.68	65.8
9	R2	65	8.1	68	8.1	* 0.260	19.6	LOS B	1.1	8.4	0.79	0.75	0.79	51.5
Approa	ach	1573	4.2	1656	4.2	0.693	10.2	LOS B	20.7	149.2	0.69	0.63	0.69	65.0
West:	Eleventh	Road Wes	t											
10	L2	58	3.6	61	3.6	0.677	39.2	LOS D	10.0	71.2	0.97	0.85	1.02	40.8
12	R2	194	2.1	204	2.1	* 0.677	39.3	LOS D	10.0	71.2	0.97	0.85	1.02	41.2
Approa	ach	252	2.4	265	2.4	0.677	39.3	LOS D	10.0	71.2	0.97	0.85	1.02	41.1
All Veh	nicles	3067	5.1	3228	5.1	0.715	14.9	LOS B	20.7	149.2	0.73	0.69	0.74	59.6

D2.4.5 AM Peak – Roundabouts

Mov ID	Turn	INPUT VO	DLUMES	DEMAND	FLOWS	Deg. Satn	Aver. Delav	Level of Service		ACK OF EUE	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist]				km/h
South:	South V	Vestern Hig	hway Sout	h										
1	L2	170	10.0	179	10.0	0.576	5.9	LOSA	6.5	47.9	0.26	0.44	0.26	63.7
2	T1	1602	6.6	1686	6.6	0.576	6.3	LOSA	6.5	48.0	0.28	0.44	0.28	66.4
Approa	ach	1772	6.9	1865	6.9	0.576	6.3	LOSA	6.5	48.0	0.28	0.44	0.28	66.1
North:	South W	estern High	nway North	1										
8	T1	817	9.9	860	9.9	0.334	7.2	LOSA	2.7	20.4	0.48	0.54	0.48	64.1
9	R2	33	5.3	35	5.3	0.334	13.0	LOS B	2.6	19.5	0.50	0.56	0.50	64.6
Approa	ach	850	9.7	895	9.7	0.334	7.4	LOSA	2.7	20.4	0.49	0.54	0.49	64.1
West:	Eleventh	Road Wes	t											
10	L2	47	17.4	49	17.4	0.423	14.3	LOS B	2.2	16.5	0.80	0.98	0.99	51.7
12	R2	161	7.7	169	7.7	0.423	20.0	LOS C	2.2	16.5	0.80	0.98	0.99	55.4
Approa	ach	208	9.9	219	9.9	0.423	18.7	LOS B	2.2	16.5	0.80	0.98	0.99	54.5
All Veh	nicles	2830	8.0	2979	8.0	0.576	7.5	LOSA	6.5	48.0	0.38	0.51	0.39	64.5

D2.4.6 PM Peak – Roundabouts

Vehicl	e Mover	nent Perfo	rmance											
Mov ID	Turn	INPUT VO [Total veh/h	DLUMES HV] %	DEMAND [Total veh/h	FLOWS HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% BACK [Veh. veh	OF QUEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South:	South We	estern Highw	ay South											
1 2	L2 T1	174 1068	2.2 7.6	183 1124	2.2 7.6	0.428 0.428	5.9 6.5	LOS A LOS A	4.0 4.0	29.5 29.5	0.33 0.34	0.47 0.47	0.33 0.34	65.6 65.6
Approa	ch	1242	6.8	1307	6.8	0.428	6.4	LOSA	4.0	29.5	0.34	0.47	0.34	65.6
North: \$	South We	stern Highw	ay North											
8	T1	1508	4.0	1587	4.0	0.613	7.6	LOSA	6.6	47.6	0.68	0.60	0.68	64.3
9	R2	65	8.1	68	8.1	0.613	14.0	LOS B	6.3	45.7	0.70	0.63	0.70	62.4
Approa	ch	1573	4.2	1656	4.2	0.613	7.9	LOSA	6.6	47.6	0.68	0.60	0.68	64.2
West: E	Eleventh F	Road West												
10	L2	58	3.6	61	3.6	0.401	10.6	LOS B	2.1	14.9	0.74	0.95	0.85	57.7
12	R2	194	2.1	204	2.1	0.401	17.0	LOS B	2.1	14.9	0.74	0.95	0.85	59.6
Approa	ch	252	2.4	265	2.4	0.401	15.5	LOS B	2.1	14.9	0.74	0.95	0.85	59.2
All Veh	icles	3067	5.1	3228	5.1	0.613	7.9	LOS A	6.6	47.6	0.55	0.57	0.56	64.3

D3 Armadale Road Network

D3.1 Do Nothing (LX at grade)

D3.1.1 AM Peak – Network Performance

Network Performance - Hourly Values				
Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS F 0.24 1.55 4.18			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	14.8 km/h 4704.0 veh-km/h 317.3 veh-h/h 62.0 km/h		1.3 km/h 5.9 ped-km/h 4.5 ped-h/h	14.7 km/h 5650.8 pers-km/h 385.2 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	14703 veh/h 14414 veh/h 4423 veh/h 132 veh/h -301 veh/h 6.4 % 6.5 % 2.149		69 ped/h 69 ped/h	17713 pers/h 17366 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	238.85 veh-h/h 59.7 sec 1070.5 sec 1070.5 sec 1.4 sec 58.2 sec		3.10 ped-h/h 160.6 sec 197.4 sec	289.72 pers-h/h 60.1 sec 1070.5 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	1.00 9603 veh/h 0.67 0.40 809.1	2.04 per km	68 ped/h 0.99 0.99 4.8	11592 pers/h 0.67 0.41 814.0
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	12924.10 \$/h 1073.3 L/h 22.8 L/100km 2548.5 kg/h 0.236 kg/h 2.355 kg/h 7.965 kg/h	2.75 \$/km 228.2 mL/km 541.8 g/km 0.050 g/km 0.501 g/km 1.693 g/km	123.27 \$/h	13047.37 \$/h

D3.1.2 PM Peak – Network Performance

Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS F 0.15 0.54 6.73			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	9.1 km/h 5277.0 veh-km/h 578.1 veh-h/h 61.5 km/h		1.3 km/h 5.9 ped-km/h 4.5 ped-h/h	9.1 km/h 6338.3 pers-km/h 698.2 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	17214 veh/h 16025 veh/h 5222 veh/h 166 veh/h -428 veh/h 5.4 % 5.8 % 3.083		69 ped/h 69 ped/h	20726 pers/h 19299 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	485.78 veh-h/h 109.1 sec 1914.9 sec 1914.9 sec 1.5 sec 107.6 sec		3.12 ped-h/h 161.7 sec 197.4 sec	586.06 pers-h/h 109.3 sec 1914.9 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	1.19 14784 veh/h 0.92 0.43 1339.1	2.80 per km	69 ped/h 0.99 0.99 4.9	17809 pers/h 0.92 0.46 1344.0
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	22469.18 \$/h 1477.2 L/h 28.0 L/100km 3497.5 kg/h 0.336 kg/h 2.964 kg/h 8.677 kg/h	4.26 \$/km 279.9 mL/km 662.8 g/km 0.064 g/km 0.562 g/km 1.644 g/km	123.85 \$/h	22593.03 \$/h

D3.2 Do Nothing (Grade separated)

D3.2.1 AM Peak – Network Performance

Network Performance - Hourly Values				
Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS F 0.28 1.95 3.64			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	17.1 km/h 4765.4 veh-km/h 279.1 veh-h/h 62.1 km/h		3.5 km/h 3.8 ped-km/h 1.1 ped-h/h	17.0 km/h 5722.3 pers-km/h 336.0 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	12194 veh/h 12001 veh/h 4423 veh/h 128 veh/h -296 veh/h 6.3 % 6.4 % 1.876		17 ped/h 17 ped/h	14649 pers/h 14418 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	200.19 veh-h/h 60.0 sec 810.5 sec 810.5 sec 1.8 sec 58.2 sec		0.21 ped-h/h 45.4 sec 45.6 sec	240.44 pers-h/h 60.0 sec 810.5 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	1.00 8964 veh/h 0.75 0.42 671.3	1.88 per km	16 ped/h 0.96 0.96 1.2	10772 pers/h 0.75 0.42 672.5
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	11413.27 \$/h 964.8 L/h 20.2 L/100km 2291.7 kg/h 0.209 kg/h 2.142 kg/h 7.078 kg/h	2.40 \$/km 202.5 mL/km 480.9 g/km 0.044 g/km 0.450 g/km 1.485 g/km	30.15 \$/h	11443.41 \$/h

D3.2.2 PM Peak – Network Performance

Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Fravel Time Index Congestion Coefficient	LOS F 0.18 0.87 5.61			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	11.0 km/h 5342.8 veh-km/h 486.7 veh-h/h 61.5 km/h		3.4 km/h 3.8 ped-km/h 1.1 ped-h/h	11.0 km/h 6415.2 pers-km/h 585.1 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation	14306 veh/h 13396 veh/h 5222 veh/h 162 veh/h -425 veh/h 5.3 % 5.7 % 3.311		17 ped/h 17 ped/h	17184 pers/h 16093 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	394.03 veh-h/h 105.9 sec 2253.3 sec 2253.3 sec 1.9 sec 104.0 sec		0.23 ped-h/h 49.9 sec 50.1 sec	473.07 pers-h/h 105.8 sec 2253.3 sec
Ave. Queue Storage Ratio (Worst Lane) Fotal Effective Stops Effective Stop Rate Proportion Queued Performance Index	1.27 14275 veh/h 1.07 0.45 1141.9	2.67 per km	16 ped/h 0.96 0.96 1.2	17146 pers/h 1.07 0.47 1143.1
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	19041.40 \$/h 1299.0 L/h 24.3 L/100km 3077.2 kg/h 0.294 kg/h 2.681 kg/h 7.726 kg/h	3.56 \$/km 243.1 mL/km 576.0 g/km 0.055 g/km 0.502 g/km 1.446 g/km	30.73 \$/h	19072.12 \$/h

D3.3 Do Something (Grade separated)

D3.3.1 AM Peak - Network Performance - Fully Signalised

Network Performance - Hourly Values				
Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS D 0.55 4.98 1.82			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	34.1 km/h 4806.1 veh-km/h 141.1 veh-h/h 62.2 km/h		3.5 km/h 3.8 ped-km/h 1.1 ped-h/h	33.9 km/h 5771.1 pers-km/h 170.4 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	11675 veh/h 11675 veh/h 4423 veh/h 128 veh/h -296 veh/h 6.5 % 6.5 % 0.858		17 ped/h 17 ped/h	14027 pers/h 14027 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	63.09 veh-h/h 19.5 sec 53.7 sec 53.7 sec 1.7 sec 17.7 sec		0.19 ped-h/h 40.9 sec 41.1 sec	75.91 pers-h/h 19.5 sec 53.7 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.44 7114 veh/h 0.61 0.62 536.0	1.48 per km	16 ped/h 0.95 0.95 1.2	8553 pers/h 0.61 0.62 537.2
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	6849.39 \$/h 967.6 L/h 20.1 L/100km 2301.9 kg/h 0.182 kg/h 2.141 kg/h 9.649 kg/h	1.43 \$/km 201.3 mL/km 479.0 g/km 0.038 g/km 0.446 g/km 2.008 g/km	29.57 \$/h	6878.95 \$/h

D3.3.2 PM Peak – Network Performance – Fully Signalised

Network Performance - Hourly Values				
Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS E 0.44 3.79 2.27			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	27.2 km/h 5634.8 veh-km/h 206.9 veh-h/h 61.7 km/h		3.5 km/h 3.8 ped-km/h 1.1 ped-h/h	27.1 km/h 6765.5 pers-km/h 249.4 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	13675 veh/h 13671 veh/h 5222 veh/h 162 veh/h -425 veh/h 5.5 % 5.5 % 1.070		17 ped/h 17 ped/h	16427 pers/h 16422 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	114.47 veh-h/h 30.1 sec 137.0 sec 134.9 sec 1.8 sec 28.4 sec		0.21 ped-h/h 45.9 sec 46.1 sec	137.58 pers-h/h 30.2 sec 134.9 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.79 9865 veh/h 0.72 0.70 878.1	1.75 per km	16 ped/h 0.96 0.96 1.2	11854 pers/h 0.72 0.70 879.2
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	9639.13 \$/h 1237.8 L/h 22.0 L/100km 2939.2 kg/h 0.240 kg/h 2.689 kg/h 11.849 kg/h	1.71 \$/km 219.7 mL/km 521.6 g/km 0.043 g/km 0.477 g/km 2.103 g/km	30.21 \$/h	9669.34 \$/h

D3.3.3 AM Peak – Network Performance – Roundabouts Only

Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS D 0.62 5.76 1.62			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	38.6 km/h 5081.1 veh-km/h 131.5 veh-h/h 62.5 km/h		3.5 km/h 3.8 ped-km/h 1.1 ped-h/h	38.4 km/h 6101.2 pers- 158.9 pers-l
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	11675 veh/h 11675 veh/h 4423 veh/h 128 veh/h -296 veh/h 6.5 % 6.5 % 0.878		17 ped/h 17 ped/h	14027 pers/h 14027 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	47.61 veh-h/h 14.7 sec 60.4 sec 60.4 sec 4.3 sec 10.3 sec		0.21 ped-h/h 45.4 sec 45.6 sec	57.34 pers-1 14.7 sec 60.4 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.40 7406 veh/h 0.63 0.55 379.2	1.46 per km	16 ped/h 0.96 0.96 1.2	8904 pers/t 0.63 0.55 380.4
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	6666.01 \$/h 1027.1 L/h 20.2 L/100km 2442.7 kg/h 0.195 kg/h 2.270 kg/h 9.595 kg/h	1.31 \$/km 202.1 mL/km 480.7 g/km 0.038 g/km 0.447 g/km 1.888 g/km	30.15 \$/h	6696.15 \$/h

D3.3.4 PM Peak – Network Performance – Roundabouts Only

Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Fravel Time Index	LOS D 0.54 4.91			
Congestion Coefficient	1.85			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	33.6 km/h 5945.3 veh-km/h 176.9 veh-h/h 62.0 km/h		3.3 km/h 3.8 ped-km/h 1.2 ped-h/h	33.4 km/h 7138.1 pers-km/h 213.5 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	13675 veh/h 13675 veh/h 5222 veh/h 162 veh/h -425 veh/h 5.5 % 0.942		17 ped/h 17 ped/h	16427 pers/h 16427 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	77.97 veh-h/h 20.5 sec 81.8 sec 81.8 sec 4.2 sec 16.3 sec		0.28 ped-h/h 60.9 sec 61.1 sec	93.85 pers-h/h 20.6 sec 81.8 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.71 9560 veh/h 0.70 0.62 608.7	1.61 per km	16 ped/h 0.97 0.97 1.3	11488 pers/h 0.70 0.63 609.9
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	8642.59 \$/h 1236.9 L/h 20.8 L/100km 2936.7 kg/h 0.239 kg/h 2.714 kg/h 11.047 kg/h	1.45 \$/km 208.0 mL/km 494.0 g/km 0.040 g/km 0.457 g/km 1.858 g/km	32.14 \$/h	8674.73 \$/h

D3.3.5 AM Peak – Network Performance – Partial treatment

Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS D 0.60 5.52 1.68			
•				
ravel Speed (Average) ravel Distance (Total) ravel Time (Total) Jesired Speed (Program)	37.2 km/h 4997.3 veh-km/h 134.2 veh-h/h 62.4 km/h		3.5 km/h 3.8 ped-km/h 1.1 ped-h/h	37.0 km/h 6000.6 pers-km/h 162.2 pers-h/h
Demand Flows (Total for all Sites)	11675 veh/h		17 ped/h	14027 pers/h
Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation	11675 veh/h 4423 veh/h 128 veh/h -296 veh/h 6.5 % 6.5 % 0.878		17 ped/h	14027 pers/h
	50.40			00.44
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane)	52.42 veh-h/h 16.2 sec 60.4 sec		0.21 ped-h/h 45.4 sec	63.11 pers-h/h 16.2 sec
Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	60.4 sec 3.5 sec 12.7 sec		45.6 sec	60.4 sec
us Ougus Storage Datio (Maret Lane)	0.40			
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.40 7555 veh/h 0.65 0.59 427.0	1.51 per km	16 ped/h 0.96 0.96 1.2	9082 pers/h 0.65 0.59 428.2
Cost (Total)	6778.87 \$/h	1.36 \$/km	30.15 \$/h	6809.01 \$/h
Jost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) HOX (Total)	1037.1 L/h 20.8 L/100km 2466.6 kg/h 0.196 kg/h 2.283 kg/h 9.978 kg/h	1.36 \$/KIII 207.5 mL/km 493.6 g/km 0.039 g/km 0.457 g/km 1.997 g/km	30.15 \$/11	6003.01 \$/11

D3.3.6 PM Peak – Network Performance – Partial treatment

Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Fravel Time Index Congestion Coefficient	LOS D 0.53 4.75 1.90			
congestion Coefficient	1.50			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	32.7 km/h 5856.4 veh-km/h 179.3 veh-h/h 62.0 km/h		3.3 km/h 3.8 ped-km/h 1.2 ped-h/h	32.5 km/h 7031.5 pers-km/l 216.3 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	13675 veh/h 13675 veh/h 5222 veh/h 162 veh/h -425 veh/h 5.5 % 5.5 % 0.942		17 ped/h 17 ped/h	16427 pers/h 16427 pers/h
Central Delay (Tetal)	82.67 veh-h/h		0.28 ped-h/h	99.49 pers-h/h
control Delay (Total) control Delay (Average) control Delay (Worst Lane)	21.8 sec 81.8 sec		60.9 sec	21.8 sec
Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	81.8 sec 3.5 sec 18.3 sec		61.1 sec	81.8 sec
Ave. Queue Storage Ratio (Worst Lane)	0.71			
order Education (Worst Larre) fortal Effective Stops effective Stop Rate Proportion Queued Performance Index	9541 veh/h 0.70 0.64 660.8	1.63 per km	16 ped/h 0.97 0.97 1.3	11466 pers/h 0.70 0.65 662.0
Coot (Total)	8724.04 \$/h	1.49 \$/km	32.14 \$/h	8756.18 \$/h
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	6724.04 \$/II 1237.8 L/h 21.1 L/100km 2939.0 kg/h 0.238 kg/h 2.709 kg/h 11.298 kg/h	1.49 \$/km 211.4 mL/km 501.9 g/km 0.041 g/km 0.463 g/km 1.929 g/km	32.14 \$/11	8/36.18 \$/11

D4 Church Avenue Road Network

D4.1 Do Nothing (LX at grade)

D4.1.1 AM Peak – Network performance

Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS)	LOS D			
Speed Efficiency	0.57			
Travel Time Index	5.20			
Congestion Coefficient	1.76			
Fravel Speed (Average)	27.4 km/h		0.1 km/h	23.1 km/h
Fravel Distance (Total)	1702.4 veh-km/h		1.8 ped-km/h	2044.8 pers-km/
Travel Time (Total)	62.1 veh-h/h		13.9 ped-h/h	88.4 pers-h/h
Desired Speed (Program)	48.3 km/h		10.0 pcd 1ii11	00.1 pc13 1//11
Socied Opeda (Fregram)	10.0 101111			
Demand Flows (Total for all Sites)	5165 veh/h		53 ped/h	6251 pers/h
Arrival Flows (Total for all Sites)	5165 veh/h		53 ped/h	6251 pers/h
Demand Flows (Entry Total)	2554 veh/h			
Midblock Inflows (Total)	37 veh/h			
Midblock Outflows (Total)	-364 veh/h			
Percent Heavy Vehicles (Demand)	3.8 %			
Percent Heavy Vehicles (Arrival)	3.8 %			
Degree of Saturation	1.128			
One-to-LD along (Tatal)	00.54		40.44 1.5/5	45.05
Control Delay (Total)	26.51 veh-h/h		13.44 ped-h/h	45.25 pers-h/h
Control Delay (Average)	18.5 sec		919.0 sec	26.1 sec
Control Delay (Worst Lane) Control Delay (Worst Movement)	138.4 sec 142.2 sec		919.0 sec	919.0 sec
Geometric Delay (Average)	3.1 sec		919.0 Sec	919.0 SEC
Stop-Line Delay (Average)	15.4 sec			
Stop-Line Delay (Average)	10.4 360			
Ave. Queue Storage Ratio (Worst Lane)	1.00			
Total Effective Stops	4578 veh/h		53 ped/h	5546 pers/h
Effective Stop Rate	0.89	2.69 per km	1.00	0.89
Proportion Queued	0.51		1.00	0.51
Performance Index	288.9		14.1	303.0
2 4 7 4 13	0040.04.04	4.55.00	000 40 44	2222 27 44
Cost (Total)	2640.24 \$/h	1.55 \$/km	382.43 \$/h	3022.67 \$/h
Fuel Consumption (Total)	259.3 L/h	152.3 mL/km		
Fuel Economy	15.2 L/100km	200 0 //		
Carbon Dioxide (Total)	614.3 kg/h	360.9 g/km		
Hydrocarbons (Total)	0.052 kg/h	0.031 g/km		
Carbon Monoxide (Total)	0.481 kg/h	0.282 g/km		
NOx (Total)	1.516 kg/h	0.890 g/km		

D4.1.2 PM Peak – Network performance

Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS C 0.74 7.08 1.36			
Travel Speed (Average) Fravel Distance (Total) Fravel Time (Total) Desired Speed (Program)	35.4 km/h 1858.3 veh-km/h 52.5 veh-h/h 48.0 km/h		0.1 km/h 1.8 ped-km/h 13.9 ped-h/h	29.0 km/h 2231.7 pers-km/h 76.9 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	5597 veh/h 5597 veh/h 2821 veh/h 94 veh/h -267 veh/h 3.8 % 3.8 % 0.815		53 ped/h 53 ped/h	6769 pers/h 6769 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	13.58 veh-h/h 8.7 sec 21.2 sec 24.4 sec 3.0 sec 5.7 sec		13.44 ped-h/h 919.0 sec 919.0 sec	29.74 pers-h/h 15.8 sec 919.0 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	1.00 3945 veh/h 0.70 0.56 220.3	2.12 per km	53 ped/h 1.00 1.00 14.1	4786 pers/h 0.71 0.57 234.5
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	2330.43 \$/h 263.0 L/h 14.2 L/100km 624.2 kg/h 0.049 kg/h 0.485 kg/h 1.682 kg/h	1.25 \$/km 141.5 mL/km 335.9 g/km 0.026 g/km 0.261 g/km 0.905 g/km	382.43 \$/h	2712.86 \$/h

D4.2 Do Nothing (grade separated)

D4.2.1 AM Peak – Network performance

Network Performance - Hourly Values			
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS B 0.81 7.89 1.23		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	39.1 km/h 1717.1 veh-km/h 43.9 veh-h/h 48.3 km/h		39.1 km/h 2060.5 pers-km/h 52.7 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	4149 veh/h 4149 veh/h 2554 veh/h 36 veh/h -363 veh/h 3.8 % 3.8 % 0.620		4979 pers/h 4979 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	7.99 veh-h/h 6.9 sec 9.6 sec 12.5 sec 4.1 sec 2.8 sec		9.58 pers-h/h 6.9 sec 12.5 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.07 2801 veh/h 0.68 0.59 121.2	1.63 per km	3361 pers/h 0.68 0.59 121.2
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1957.31 \$/h 224.0 L/h 13.0 L/100km 531.0 kg/h 0.041 kg/h 0.413 kg/h 1.369 kg/h	1.14 \$/km 130.5 mL/km 309.3 g/km 0.024 g/km 0.240 g/km 0.797 g/km	1957.31 \$/h

D4.2.2 PM Peak – Network performance

Network Performance - Hourly Values			
Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS C 0.76 7.36 1.31		
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	36.6 km/h 1877.4 veh-km/h 51.3 veh-h/h 48.0 km/h		36.6 km/h 2252.9 pers-km/h 61.5 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Pegree of Saturation	4580 veh/h 4580 veh/h 2821 veh/h 41 veh/h -213 veh/h 4.0 % 4.0 % 0.812		5496 pers/h 5496 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	11.75 veh-h/h 9.2 sec 21.2 sec 24.4 sec 4.0 sec 5.3 sec		14.09 pers-h/h 9.2 sec 24.4 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.26 3665 veh/h 0.80 0.67 163.6	1.95 per km	4398 pers/h 0.80 0.67 163.6
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	2285.63 \$/h 261.3 L/h 13.9 L/100km 620.1 kg/h 0.048 kg/h 0.483 kg/h 1.690 kg/h	1.22 \$/km 139.2 mL/km 330.3 g/km 0.026 g/km 0.257 g/km 0.900 g/km	2285.63 \$/h

D5 Forrest Road Network

D5.1 Do Nothing (LX at grade)

D5.1.1 AM Peak – Network performance

Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS B 0.81 7.85 1.24			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	33.2 km/h 1252.9 veh-km/h 37.8 veh-h/h 41.1 km/h		0.6 km/h 1.9 ped-km/h 3.3 ped-h/h	30.9 km/h 1505.4 pers-km/ 48.7 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	5123 veh/h 5123 veh/h 1733 veh/h 176 veh/h -104 veh/h 1.5 % 1.5 % 0.807		53 ped/h 53 ped/h	6200 pers/h 6200 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	7.68 veh-h/h 5.4 sec 18.9 sec 21.7 sec 1.5 sec 3.9 sec		2.89 ped-h/h 197.4 sec 197.4 sec	12.10 pers-h/h 7.0 sec 197.4 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	1.00 2187 veh/h 0.43 0.31 133.6	1.75 per km	52 ped/h 0.99 0.99 3.6	2676 pers/h 0.43 0.31 137.2
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1545.11 \$/h 130.7 L/h 10.4 L/100km 308.3 kg/h 0.024 kg/h 0.184 kg/h 0.311 kg/h	1.23 \$/km 104.3 mL/km 246.1 g/km 0.019 g/km 0.147 g/km 0.248 g/km	91.84 \$/h	1636.96 \$/h

D5.1.2 PM Peak – Network performance

Performance Measure	Vehicles	Per Unit Distance	Pedestrians	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS B 0.81 7.83 1.24			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program)	33.2 km/h 1287.4 veh-km/h 38.8 veh-h/h 41.2 km/h		0.6 km/h 1.9 ped-km/h 3.3 ped-h/h	31.0 km/h 1546.8 pers-km/l 49.9 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrival) Degree of Saturation	5514 veh/h 5514 veh/h 1743 veh/h 214 veh/h -68 veh/h 1.9 % 1.9 % 0.744		53 ped/h 53 ped/h	6669 pers/h 6669 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	7.95 veh-h/h 5.2 sec 17.7 sec 20.5 sec 1.5 sec 3.7 sec		2.89 ped-h/h 197.4 sec 197.4 sec	12.42 pers-h/h 6.7 sec 197.4 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	1.00 2210 veh/h 0.40 0.29 153.6	1.72 per km	52 ped/h 0.99 0.99 3.6	2704 pers/h 0.41 0.29 157.3
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1594.91 \$/h 138.1 L/h 10.7 L/100km 326.3 kg/h 0.025 kg/h 0.197 kg/h 0.425 kg/h	1.24 \$/km 107.2 mL/km 253.5 g/km 0.019 g/km 0.153 g/km 0.330 g/km	91.84 \$/h	1686.75 \$/h

D5.2 Do Nothing (grade separated)

D5.2.1 AM Peak – Network performance

Vehicles	Per Unit Distance	Persons
LOS B 0.88 8.70 1.13		
36.5 km/h 1267.2 veh-km/h 34.7 veh-h/h 41.3 km/h		36.5 km/h 1520.7 pers-km/h 41.7 pers-h/h
4091 veh/h 4091 veh/h 1733 veh/h 176 veh/h -104 veh/h 1.4 % 0.659		4909 pers/h 4909 pers/h
4.44 veh-h/h 3.9 sec 10.8 sec 13.5 sec 1.9 sec 2.0 sec		5.33 pers-h/h 3.9 sec 13.5 sec
0.69 1838 veh/h 0.45 0.32 73.1	1.45 per km	2206 pers/h 0.45 0.32 73.1
426.19 \$/h 122.8 L/h 9.7 L/100km 289.7 kg/h 0.022 kg/h 0.174 kg/h 0.281 kg/h	1.13 \$/km 96.9 mL/km 228.6 g/km 0.017 g/km 0.137 g/km 0.222 g/km	1426.19 \$/h
	0.88 8.70 1.13 36.5 km/h 1267.2 veh-km/h 34.7 veh-h/h 41.3 km/h 4091 veh/h 176 veh/h 176 veh/h 1.4 % 0.659 4.44 veh-h/h 3.9 sec 10.8 sec 13.5 sec 1.9 sec 2.0 sec 0.69 1838 veh/h 0.45 0.32 73.1 426.19 \$/h 122.8 L/h 9.7 L/100km 289.7 kg/h 0.022 kg/h 0.174 kg/h	LOS B 0.88 8.70 1.13 36.5 km/h 1267.2 veh-km/h 34.7 veh-h/h 41.3 km/h 4091 veh/h 4091 veh/h 176 veh/h -104 veh/h -104 veh/h 1.4 % 0.659 4.44 veh-h/h 3.9 sec 10.8 sec 13.5 sec 1.9 sec 2.0 sec 0.69 1838 veh/h 0.45 0.32 73.1 426.19 \$/h 1.13 \$/km 122.8 L/h 96.9 mL/km 9.7 L/100km 289.7 kg/h 0.022 kg/h 0.017 g/km 0.174 kg/h 0.137 g/km

D5.2.2 PM Peak – Network performance

Performance Measure	Vehicles	Per Unit Distance	Persons
Network Level of Service (LOS) Speed Efficiency Travel Time Index Congestion Coefficient	LOS B 0.88 8.71 1.13		
Fravel Speed (Average) Fravel Distance (Total) Fravel Time (Total) Desired Speed (Program)	36.7 km/h 1303.2 veh-km/h 35.5 veh-h/h 41.5 km/h		36.7 km/h 1563.9 pers-km/h 42.6 pers-h/h
Demand Flows (Total for all Sites) Arrival Flows (Total for all Sites) Demand Flows (Entry Total) Midblock Inflows (Total) Midblock Outflows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation	4356 veh/h 4356 veh/h 1743 veh/h 214 veh/h -68 veh/h 1.8 % 1.8 % 0.677		5227 pers/h 5227 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average)	4.50 veh-h/h 3.7 sec 11.3 sec 13.6 sec 1.9 sec 1.8 sec		5.40 pers-h/h 3.7 sec 13.6 sec
Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	0.78 1842 veh/h 0.42 0.30 75.5	1.41 per km	2210 pers/h 0.42 0.30 75.5
Cost (Total) Fuel Consumption (Total) Fuel Economy Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1472.53 \$/h 131.4 L/h 10.1 L/100km 310.5 kg/h 0.023 kg/h 0.191 kg/h 0.398 kg/h	1.13 \$/km 100.8 mL/km 238.3 g/km 0.018 g/km 0.146 g/km 0.305 g/km	1472.53 \$/h